Markov chains and stochastic stability /
Saved in:
Author / Creator: | Meyn, S. P. (Sean P.) |
---|---|
Edition: | 2nd ed. |
Imprint: | Cambridge ; New York : Cambridge University Press, 2009. |
Description: | xxviii, 594 p. : ill. ; 25 cm. |
Language: | English |
Series: | Communications and control engineering series Communications and control engineering series. |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/7705976 |
Table of Contents:
- List of figures
- Prologue to the Second edition, Peter W. Glynn
- Preface to the second edition, Sean Meyn
- Preface to the first edition
- I. Communication and Regeneration
- 1. Heuristics
- 1.1. A range of Markovian environments
- 1.2. Basic models in practice
- 1.3. Stochastic stability for Markov models
- 1.4. Commentary
- 2. Markov models
- 2.1. Markov models in time series
- 2.2. Nonlinear state space models
- 2.3. Models in control and systems theory
- 2.4. Markov models with regeneration times
- 2.5. Commentary
- 3. Transition probabilities
- 3.1. Defining a Markovian Process
- 3.2. Foundations on a countable space
- 3.3. Specific transition matrices
- 3.4. Foundations for general state space chains
- 3.5. Building transition kernels for specific models
- 3.6. Commentary
- 4. Irreducibility
- 4.1. Communication and irreducibility: Countable spaces
- 4.2. ¿-Irreducibility
- 4.3. ¿-Irreducibility for random walk models
- 4.4. ¿-Irreducible linear models
- 4.5. Commentary
- 5. Pseudo-atoms
- 5.1. Splitting ¿-irreducible chains
- 5.2. Small sets
- 5.3. Small sets for specific models
- 5.4. Cyclic behavior
- 5.5. Petite sets and sampled chains
- 5.6. Commentary
- 6. Topology and continuity
- 6.1. Feller properties and forms of stability
- 6.2. T-chains
- 6.3. Continuous components for specific models
- 6.4. e-Chains
- 6.5. Commentary
- 7. The nonlinear state space model
- 7.1. Forward accessibility and continuous components
- 7.2. Minimal sets and irreducibility
- 7.3. Periodicity for nonlinear state space models
- 7.4. Forward accessible examples
- 7.5. Equicontinuity and the nonlinear state space model
- 7.6. Commentary
- II. Stability Structures
- 8. Transience and recurrence
- 8.1. Classifying chains on countable spaces
- 8.2. Classifying ¿-irreducible chains
- 8.3. Recurrence and transience relationships
- 8.4. Classification using drift criteria
- 8.5. Classifying random walk on R+
- 8.6. Commentary
- 9. Harris and topological recurrence
- 9.1. Harris recurrence
- 9.2. Non-evanescent and recurrent chains
- 9.3. Topologically recurrent and transient states
- 9.4. Criteria for stability on a topological space
- 9.5. Stochastic comparison and increment analysis
- 9.6. Commentary
- 10. The existence of ¿
- 10.1. Stationarity and invariance
- 10.2. The existence of ¿: chains with atoms
- 10.3. Invariant measures for countable space models
- 10.4. The existence of ¿: ¿-irreducible chains
- 10.5. Invariant measures for general models
- 10.6. Commentary
- 11. Drift and regularity
- 11.1. Regular chains
- 11.2. Drift, hitting times and deterministic models
- 11.3. Drift, criteria for regularity
- 11.4. Using the regularity criteria
- 11.5. Evaluating non-positivity
- 11.6. Commentary
- 12. Invariance and tightness
- 12.1. Chains bounded in probability
- 12.2. Generalized sampling and invariant measures
- 12.3. The existence of a ¿-finite invariant measure
- 12.4. Invariant measures for e-chains
- 12.5. Establishing boundedness in probability
- 12.6. Commentary
- III. Convergence
- 13. Ergodicity
- 13.1. Ergodic chains on countable spaces
- 13.2. Renewal and regeneration
- 13.3. Ergodicity of positive Harris chains
- 13.4. Sums of transition probabilities
- 13.5. Commentary
- 14. f-Ergodicity and f-regularity
- 14.1. f-Properties: chains with atoms
- 14.2. f-Regularity and drift
- 14.3. f-Ergodicity for general chains
- 14.4. f-Ergodicity of specific models
- 14.5. A key renewal theorem
- 14.6. Commentary
- 15. Geometric ergodicity
- 15.1. Geometric properties: chains with atoms
- 15.2. Kendall sets and drift criteria
- 15.3. f-Geometric regularity of ¿ and its skeleton
- 15.4. f-Geometric ergodicity for general chains
- 15.5. Simple random walk and linear models
- 15.6. Commentary
- 16. V-Uniform ergodicity
- 16.1. Operator norm convergence
- 16.2. Uniform ergodicity
- 16.3. Geometric ergodicity and increment analysis
- 16.4. Models from queueing theory
- 16.5. Autoregressive and state space models
- 16.6. Commentary
- 17. Sample paths and limit theorems
- 17.1. Invariant ¿-fields and the LLN
- 17.2. Ergodic theorems for chains possessing an atom
- 17.3. General Harris chains
- 17.4. The functional CLT
- 17.5. Criteria for the CLT and the LIL
- 17.6. Applications
- 17.7. Commentary
- 18. Positivity
- 18.1. Null recurrent chains
- 18.2. Characterizing positivity using Pn
- 18.3. Positivity and T-chains
- 18.4. Positivity and e-chains
- 18.5. The LLN for e-chains
- 18.6. Commentary
- 19. Generalized classification criteria
- 19.1. State-dependent drifts
- 19.2. History-dependent drift criteria
- 19.3. Mixed drift conditions
- 19.4. Commentary
- 20. Epilogue to the second edition
- 20.1. Geometric ergodicity and spectral theory
- 20.2. Simulation and MCMC
- 20.3. Continuous time models
- IV. Appendices
- A. Mud maps
- A.1. Recurrence versus transience
- A.2. Positivity versus nullity
- A.3. Convergence properties
- B. Testing for stability
- B.1. Glossary of drift conditions
- B.2. The Scalar SETAR model: a complete classification
- C. Glossary of models assumptions
- C.1. Regenerative models
- C.2. State space models
- D. Some mathematical background
- D.1. Some measure theory
- D.2. Some probability theory
- D.3. Some topology
- D.4. Some real analysis
- D.5. Convergence concepts for measures
- D.6. Some martingale theory
- D.7. Some results on sequences and numbers
- Bibliography
- Indexes
- General index
- Symbols