Computational systems biology /

Saved in:
Bibliographic Details
Imprint:Totowa, N.J. : Humana ; London : Springer [distributor], 2009.
Description:xviii, 587 p. : ill. (some col.) ; 27 cm.
Language:English
Series:Methods in molecular biology ; 541
Methods in molecular biology (Clifton, N.J.) ; v. 541.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7708293
Hidden Bibliographic Details
Other authors / contributors:McDermott, Jason.
ISBN:9781588299055 (hbk.)
1588299058 (hbk.)
Notes:"Springer protocols"--cover.
Includes bibliographical references and index.
Table of Contents:
  • Preface
  • Contributors
  • Color Plates
  • Part I. Network Components
  • 1. Indentification of cis-Regulatory Elements in Gene Co-expression Networks Using A-GLAM
  • 2. Structure-Based Ab Initio Prediction of Transcription Factor-Binding Sites
  • 3. Inferring Protein-Protein Interactions from Multiple Protein Domain Combinations
  • 4. Prediction of Protein-Protein Interactions: A Study of the Co-Evolution Model
  • 5. Computational Reconstruction of Protein-Protein Interaction Networks: Algorithms and Issues
  • 6. Prediction and Integration of Regulatory and Protein-Protein Interactions
  • 7. Detecting Hierrchical Modularity in Biological Networks
  • Part II. Network Inference
  • 8. Methods to Reconstruct and Compare Transcriptional Regulatory Networks
  • 9. Learning Global Models of Transcriptional Regulatory Networks from Data
  • 10. Inferring Molecular Interactions Pathways from eQTL Data
  • 11. Methods for the Inference of Biological Pathways and Networks
  • Part III. Network Dynamics
  • 12. Exploring Pathways from Gene Co-expression to Network Dynamics
  • 13. Network Dynamics
  • 14. Kinetic Modeling of Biological Systems
  • 15. Guidance for Data Collection and Computational Modelling of Regulatory Networks
  • Part IV. Function and Evolutionary Systems Biology
  • 16. A Maximum Likelihood Method for Reconstruction of the Evolution of Eukaryotic Gene Structure
  • 17. Enzyme Function Prediction with Interpretable Models
  • 18. Using Evolutionary Information to Find Specificity-Determining and Co-evolving Residues
  • 19. Connecting Protein Interaction Data, Mutations, and Disease Using Bioinformatics
  • 20. Effects of Functional Bias on Supervised Learning of a Gene Network Model
  • Part V. Computational Infrastructure for Systems Biology
  • 21. Comparing Algorithms for Clustering of Expression Data: How to Assess Gene Clusters
  • 22. The Bioverse API and Web Application
  • 23. Computational Representation of Biological Systems
  • 24. Biological Network Inference and Analysis Using SEBINI and CABIN
  • Index