Physical biochemistry : principles and applications /

Saved in:
Bibliographic Details
Author / Creator:Sheehan, David, 1958-
Edition:2nd ed.
Imprint:Chichester, UK ; Hoboken, NJ : Wiley-Blackwell, 2009.
Description:xiv, 407 p., [8] p. of plates : ill. (some col.) ; 26 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7773107
Hidden Bibliographic Details
ISBN:9780470856024 (hbk.)
0470856025 (hbk.)
9780470856031 (pbk.)
0470856033 (pbk.)
Notes:Includes bibliographical references and index.
Table of Contents:
  • Preface
  • Acknowledgements
  • Chapter 1. Introduction
  • 1.1. Special chemical requirements of biomolecules
  • 1.2. Factors affecting analyte structure and stability
  • 1.2.1. pH effects
  • 1.2.2. Temperature effects
  • 1.2.3. Effects of solvent polarity
  • 1.3. Buffering systems used in biochemistry
  • 1.3.1. How does a buffer work?
  • 1.3.2. Some common buffers
  • 1.3.3. Additional components often used in buffers
  • 1.4. Quantitation, units and data handling
  • 1.4.1. Units used in this text
  • 1.4.2. Quantitation of protein and biological activity
  • 1.5. Objectives of this book Bibliography
  • Chapter 2. Chromatography
  • 2.1. Principles of chromatography
  • 2.1.1. The partition coefficient
  • 2.1.2. Phase systems used in biochemistry
  • 2.1.3. Liquid chromatography
  • 2.1.4. Gas chromatography
  • 2.2. Performance parameters used in chromatography
  • 2.2.1. Retention
  • 2.2.2. Resolution
  • 2.2.3. Physical basis of peak broadening
  • 2.2.4. Plate height equation
  • 2.2.5. Capacity factor
  • 2.2.5. Peak symmetry
  • 2.2.7. Significance of performance criteria in chromatography
  • 2.3. Chromatography equipment
  • 2.3.1. Outline of standard system used
  • 2.3.2. Components of a chromatography system
  • 2.3.3. Stationary phases used
  • 2.3.4. Elution
  • 2.4. Modes of chromatography
  • 2.4.1. Ion exchange
  • 2.4.2. Gel filtration
  • 2.4.3. Reversed phase
  • 2.4.4. Hydrophobic interaction
  • 2.4.5. Affinity
  • 2.4.6. Immobilised metal affinity chromatography
  • 2.4.7. Hydroxyapatite
  • 2.5. Open-column chromatography
  • 2.5.1. Equipment used
  • 2.5.2. Industrial-scale chromatography of proteins
  • 2.6. High-performance liquid chromatography
  • 2.6.1. Equipment used
  • 2.6.2. Stationary phases in HPLC
  • 2.6.3. Liquid phases in HPLC
  • 2.7. Fast protein liquid chromatography
  • 2.7.1. Equipment used
  • 2.7.2. Comparison with HPLC
  • 2.8. Perfusion chromatography
  • 2.8.1. Theory of perfusion chromatography
  • 2.8.2. The practice of perfusion chromatography
  • 2.9. Membrane-based chromatography systems
  • 2.9.1. Theoretical basis
  • 2.9.2. Applications of membrane-based separations
  • 2.10. Chromatography of a sample protein
  • 2.10.1. Designing a purification protocol
  • 2.10.2. Ion exchange chromatography of a sample protein:Glutathione S-transferases
  • 2.10.3. HPLC of peptides from glutathione S-transferases Bibliography
  • Chapter 3. Spectroscopic Techniques
  • 3.1. The nature of light
  • 3.1.1. A brief history of the theories of light
  • 3.1.2. Wave-particle duality theory of light
  • 3.2. The electromagnetic spectrum
  • 3.2.1. The Electromagnetic Spectrum
  • 3.2.2. Transitions in spectroscopy
  • 3.3. Ultraviolet/visible absorption spectroscopy
  • 3.3.1. Physical basis
  • 3.3.2. Equipment used in absorption spectroscopy
  • 3.3.3. Applications of absorption spectroscopy
  • 3.4. Fluorescence spectroscopy
  • 3.4.1. Physical basis of fluorescence and related phenomena
  • 3.4.2. Measurement of fluorescence and chemiluminescence
  • 3.4.3. External quenching of fluorescence
  • 3.4.4. Uses of fluorescence in binding studies
  • 3.4.5. Protein-folding studies
  • 3.4.6. Resonance energy transfer
  • 3.4.7. Applications of fluorescence in cell biology
  • 3.5. Spectroscopic techniques using plane-polarised light
  • 3.5.1. Polarised light
  • 3.5.2. Chirality in biomolecules
  • 3.5.3. Circular dichroism (CD)
  • 3.5.4. Equipment used in CD
  • 3.5.5. CD of biopolymers
  • 3.5.6. Linear dichroism (LD)
  • 3.5.7. LD of biomolecules
  • 3.5.8. Plasmon resonance spectroscopy
  • 3.6. Infrared spectroscopy
  • 3.6.1. Physical basis of infrared spectroscopy
  • 3.6.2. Equipment used in infrared spectroscopy
  • 3.6.3. Uses of infrared spectroscopy in structure d