Chemorheology : from fundamental principles to reactive processing /

Saved in:
Bibliographic Details
Author / Creator:Halley, Peter J., 1966-
Imprint:Cambridge, UK ; New York : Cambridge University Press, 2009.
Description:viii, 443 p. : ill. ; 26 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7774127
Hidden Bibliographic Details
Other authors / contributors:George, Graeme A.
ISBN:9780521807197 (hardback)
0521807190 (hardback)
Notes:Includes bibliographical references and index.
Table of Contents:
  • Preface
  • 1. Chemistry and structure of reactive polymers
  • 1.1. The physical structure of polymers
  • 1.1.1. Linear polymers as freely jointed chains
  • 1.1.2. Conformations of linear hydrocarbon polymers
  • 1.1.3. Molar mass and molar-mass distribution
  • 1.1.4. Development of the solid state from the melt
  • 1.2. Controlled molecular architecture
  • 1.2.1. Stepwise polymerization
  • 1.2.2. Different polymer architectures achieved by step polymerization
  • 1.2.3. Addition polymerization
  • 1.2.4. Obtaining different polymer architectures by addition polymerization
  • 1.2.5. Networks from addition polymerization
  • 1.3. Polymer blends and composites
  • 1.3.1. Miscibility of polymers
  • 1.3.2. Phase-separation phenomena
  • 1.3.3. Interpenetrating networks
  • 1.4. Degradation and stabilization
  • 1.4.1. Free-radical formation during melt processing
  • 1.4.2. Free-radical formation in the presence of oxygen
  • 1.4.3. Control of free-radical reactions during processing
  • References
  • 2. Physics and dynamics of reactive polymers
  • 2.1. Chapter rationale
  • 2.2. Polymer physics and dynamics
  • 2.2.1. Polymer physics and motion - early models
  • 2.2.2. Theories of polymer dynamics
  • 2.3. Introduction to the physics of reactive polymers
  • 2.3.1. Network polymers
  • 2.3.2. Reactively modified polymers
  • 2.4. Physical transitions in curing systems
  • 2.4.1. Gelation and vitrification
  • 2.4.2. Phase separation
  • 2.4.3. Time-temperature-transformation (TTT) diagrams
  • 2.4.4. Reactive systems without major transitions
  • 2.5. Physicochemical models of reactive polymers
  • 2.5.1. Network models
  • 2.5.2. Reactive polymer models
  • References
  • 3. Chemical and physical analyses for reactive polymers
  • 3.1. Monitoring physical and chemical changes during reactive processing
  • 3.2. Differential scanning calorimetry (DSC)
  • 3.2.1. An outline of DSC theory
  • 3.2.2. Isothermal DSC experiments for polymer chemorheology
  • 3.2.3. Modulated DSC experiments for chemorheology
  • 3.2.4. Scanning DSC experiments for chemorheology
  • 3.2.5. Process-control parameters from time-temperature superposition
  • 3.2.6. Kinetic models for network-formation from DSC
  • 3.3. Spectroscopic methods of analysis
  • 3.3.1. Information from spectroscopic methods
  • 3.3.2. Magnetic resonance spectroscopy
  • 3.3.3. Vibrational spectroscopy overview - selection rules
  • 3.3.4. Fourier-transform infrared (FT-IR) and sampling methods: transmission, reflection, emission, excitation
  • 3.3.5. Mid-infrared (MIR) analysis of polymer reactions
  • 3.3.6. Near-infrared (NIR) analysis of polymer reactions
  • 3.3.7. Raman-spectral analysis of polymer reactions
  • 3.3.8. UV-visible spectroscopy and fluorescence analysis of polymer reactions
  • 3.3.9. Chemiluminescence and charge-recombination luminescence
  • 3.4. Remote spectroscopy
  • 3.4.1. Principles of fibre-optics
  • 3.4.2. Coupling of fibre-optics to reacting systems
  • 3.5. Chemometrics and statistical analysis of spectral data
  • 3.5.1. Multivariate curve resolution
  • 3.5.2. Multivariate calibration
  • 3.5.3. Other curve-resolution and calibration methods
  • 3.6. Experimental techniques for determining physical properties during cure
  • 3.6.1. Torsional braid analysis
  • 3.6.2. Mechanical properties
  • 3.6.3. Dielectric properties
  • 3.6.4. Rheology
  • 3.6.5. Other techniques
  • 3.6.6. Dual physicochemical analysis
  • References
  • 4. Chemorheological techniques for reactive polymers
  • 4.1. Introduction
  • 4.2. Chemorheology
  • 4.2.1. Fundamental chemorheology
  • 4.3. Chemoviscosity profiles
  • 4.3.1. Chemoviscosity
  • 4.3.2. Gel effects
  • 4.4. Chemorheological techniques
  • 4.4.1. Standards
  • 4.4.2. Chemoviscosity profiles - shear-rate effects, ¿s = ¿s(¿, T)
  • 4.4.3. Chemoviscosity profiles - cure effects, ¿c = ¿c(a, T)
  • 4.4.4. Filler effects on viscosity: ¿sr(F) and ¿c(F)
  • 4.4.5. Chemoviscosity profiles - combined effects, ¿all = ¿all(¿, a, T)
  • 4.4.6. Process parameters
  • 4.5. Gelation techniques
  • References
  • 5. Chemorheology and chemorheological modelling
  • 5.1. Introduction
  • 5.2. Chemoviscosity and chemorheological models
  • 5.2.1. Neat systems
  • 5.2.2. Filled systems
  • 5.2.3. Reactive-extrusion systems and elastomer/rubber-processing systems
  • 5.3. Chemorheological models and process modelling
  • References
  • 6. Industrial technologies, chemorheological modelling and process modelling for processing reactive polymers
  • 6.1. Introduction
  • 6.2. Casting
  • 6.2.1. Process diagram and description
  • 6.2.2. Quality-control tests and important process variables
  • 6.2.3. Typical systems
  • 6.2.4. Chemorheological and process modelling
  • 6.3. Potting, encapsulation, sealing and foaming
  • 6.3.1. Process diagram and description
  • 6.3.2. Quality-control tests and important process variables
  • 6.3.3. Typical systems
  • 6.3.4. Chemorheological and process modelling
  • 6.4. Thermoset extrusion
  • 6.4.1. Extrusion
  • 6.4.2. Pultrusion
  • 6.5. Reactive extrusion
  • 6.5.1. Process diagram and description
  • 6.5.2. Quality-control tests and important process variables
  • 6.5.3. Typical systems
  • 6.5.4. Chemorheological and process modelling
  • 6.6. Moulding processes
  • 6.6.1. Open-mould processes
  • 6.6.2. Resin-transfer moulding
  • 6.6.3. Compression, SMC, DMC and BMC moulding
  • 6.6.4. Transfer moulding
  • 6.6.5. Reaction injection moulding
  • 6.6.6. Thermoset injection moulding
  • 6.6.7. Press moulding (prepreg)
  • 6.6.8. Autoclave moulding (prepreg)
  • 6.7. Rubber mixing and processing
  • 6.7.1. Rubber mixing processes
  • 6.7.2. Rubber processing
  • 6.8. High-energy processing
  • 6.8.1. Microwave processing
  • 6.8.2. Ultraviolet processing
  • 6.8.3. Gamma-irradiation processing
  • 6.8.4. Electron-beam-irradiation processing
  • 6.9. Novel processing
  • 6.9.1. Rapid prototyping and manufacturing
  • 6.9.2. Microlithography
  • 6.10. Real-time monitoring
  • 6.10.1. Sensors for real-time process monitoring
  • 6.10.2. Real-time monitoring using fibre optics
  • References
  • Glossary of commonly used terms
  • Index