Nanotechnology /
Saved in:
Imprint: | Weinheim : Wiley-VCH ; [Chichester : John Wiley, distributor], c2008- |
---|---|
Description: | v. : ill. (some col.) ; 25 cm. |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/7784110 |
Table of Contents:
- List of Contributors
- 1. Introduction
- 2. The Nature of Naotechnology
- 2.1. Definition
- 2.2. From Nanoscience to Nanotechnology
- 2.2.1. Molecular Motors and Machines
- 2.2.2. Molecular Switches
- 2.2.3. Single-Electron Memories
- 2.2.4. Drug Delivery
- 2.2.5. Gene Chips
- 2.2.6. Hyperthermia
- 2.2.7. Gas Sensors
- 2.3. Technologies on the Nanoscale
- 2.3.1. Introduction
- 2.3.2. Structured Surfaces
- 2.4. Final Remarks
- References
- 3. Top-Down Versus Bottom-Up
- 3.1. Introduction
- 3.1.1. Top-Down Strategies
- 3.1.2. Bottom-Up Strategies
- 3.2. First Example: Nanotweezers
- 3.2.1. Top-Down Nanotweezers
- 3.2.2. Bottom-Up Nanotweezers
- 3.3. Second Example: Nanomotors
- 3.3.1. Top-Down Nanomotors
- 3.3.2. Bottom-Up Nanomotors
- 3.4. Third Example: Patterning
- 3.4.1. Soft Lithography
- 3.4.2. Two-Dimensional DNA Lattices
- 3.5. Fourth Example: Quantum Dots
- 3.5.1. Different Methods for Making Quantum Dots
- 3.5.2. Lithographically Defined Quantum Dots
- 3.5.3. Epitaxially Self-Assembled Quantum Dots
- 3.5.4. Colloidal Quantum Dots
- 3.6. Perspectives and Limits of Top-Down and Bottom-Up Approaches
- References
- 4. Fundamental Principles of Quantum Dots
- 4.1. Introduction and Outline
- 4.1.1. Nanoscale Science and Technology
- 4.2. Nanoscale Materials and Quantum Mechanics
- 4.2.1. Nanoscale Materials are Intermediates Between Atomic and Bulk Matter
- 4.2.2. Quantum Mechanics
- 4.3. From Atoms to Molecules and Quantum Dots
- 4.4. Shrinking Bulk Material to a Quantum Dot
- 4.4.1. Three-Dimensional Systems (Bulk Material)
- 4.4.2. Two-Dimensional Systems
- 4.4.3. One-Dimensional Systems (Quantum Wires)
- 4.4.4. Zero-Dimensional Systems (Quantum Dots)
- 4.5. Energy Levels of a (Semiconductor) Quantum Dot
- References
- 5. Fundamentals and Functionality of Inorganic Wires, Rods and Tubes
- 5.1. Introduction
- 5.2. Physical Properties of 1D Structures
- 5.3. Synthetic Methods for 1D Structures
- 5.3.1. The Template Approach
- 5.3.2. Electrochemical Techniques
- 5.3.2.1. Electrospinning
- 5.3.2.2. Electrophoretic Deposition
- 5.3.3. Vapor-Liquid-Solid (VLS) and Related Synthesis Techniques
- 5.4. Contacting the Outer World: Nanowires and Nanotubes as Building Blocks in Nano/Micro/Macro-Integration
- 5.4.1. Nanowire and Nanotube Sensors
- 5.4.2. Piezoelectrics Based on Nanowire Arrays
- 5.4.3. With Nanowires and Nanotubes to Macroelectronics
- 5.4.3.1. Inorganic Nanowire and Nanotube Transistors
- 5.4.3.2. Branched Nanowire Structures
- 5.5. Outlook
- References
- 6. Biomolecule-Nanoparticle Hybrid Systems
- 6.1. Introduction
- 6.2. Metal Nanoparticles for Electrical Contacting of Redox Proteins
- 6.3. Metal Nanoparticles as Electrochemical and Catalytic Labels
- 6.4. Metal Nanoparticles as Microgravimetric Labels
- 6.5. Semiconductor Nanoparticles as Electrochemical Labels for Biorecognition Events
- 6.6. Metal Nanoparticles as Optical Labels for Biorecognition Events
- 6.7. Semiconductor Nanoparticles as Optical Labels
- 6.8. Semiconductor Nanoparticles for Photoelectrochemical Applications
- 6.9. Biomolecules as Catalysts for the Synthesis of Nanoparticles
- 6.10. Biomolecule Growth of Metal Nanowires
- 6.11. Conclusions and Perspectives
- References
- 7. Philosophy of Nanotechnoscience
- 7.1. Introduction: Philosophy of Science and of Technoscience
- 7.2. From "Closed Theories" to Limits of Understanding and Control
- 7.2.1. Closed Relative to the Nanoscale
- 7.2.2. Applying Theory to the Nanoscale: Fitting Versus Stretching
- 7.2.3. Mute Complexity
- 7.3. From Successful Methods to the Power of Images
- 7.3.1. (Techno)scientific Methodology: Quantitative Versus Qualitative
- 7.3.2. "Ontological Indifference": Representation Versus Substitution
- 7.3.3. Images as the Beginning and End of Nanotechnologies
- 7.4. From Definitions to Visions
- 7.4.1. Wieldy and Unwieldy Conceptions
- 7.4.2. Unlimited Potential
- 7.4.3. A Formidable Challenge
- 7.5. From Epistemic Certainty to Systemic Robustness
- 7.5.1. What Do Nanoscientists Know?
- 7.5.2. The Knowledge Society
- 7.5.3. Social Robustness
- 7.6. What Basic Science Does Nanotechnology Need?
- References
- 8. Ethics of Nanotechnology. State of the Art and Challenges Ahead
- 8.1. Introduction and Overview
- 8.2. The Understanding of Ethics
- 8.3. Ethical Aspects of Nanotechnology - and Overview
- 8.3.1. Equity: Just Distribution of Opportunities and Risks
- 8.3.2. Environmental Issues
- 8.3.3. Privacy and Control
- 8.3.4. Military Use of Nanotechnology
- 8.3.5. Health
- 8.3.6. Artificial Life
- 8.3.7. Human Enhancement
- 8.4. Nanoparticles and the Precautionary Principle
- 8.4.1. The Risk Debate on Nanoparticles
- 8.4.2. The Precautionary Principle
- 8.4.3. The Precautionary Principle Applied to Nanoparticles
- 8.5. Human Enhancement by Converging Technologies
- 8.5.1. Human Enhancement: Visions and Expectations
- 8.5.2. Occasions of Choice and Need for Orientation
- 8.5.3. Human Enhancement - No Simple Answers from Ethics
- 8.5.4. Enhancement Technologies - A Marketplace Scenario Ahead?
- 8.6. Conceptual and Methodical Challenges
- 8.6.1. Ethical Assessments of Uncertain Futures
- 8.6.2. Ethical Vision Assessment
- 8.6.3. Ethical Reflection in Technology Foresight
- 8.6.4. Concomitant Ethical Reflection on Nanotechnology
- References
- 9. Outlook and Consequences
- References
- Index