Large deviations and adiabatic transitions for dynamical systems and Markov processes in fully coupled averaging /

Saved in:
Bibliographic Details
Author / Creator:Kifer, Yuri, 1948-
Imprint:Providence, R.I. : American Mathematical Society, 2009.
Description:vii, 129 p. ; 26 cm.
Language:English
Series:Memoirs of the American Mathematical Society , 0065-9266 ; no. 944
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7786484
Hidden Bibliographic Details
ISBN:9780821844250 (alk. paper)
0821844253 (alk. paper)
Notes:"Volume 201, number 944 (third of 5 numbers )."
Includes bibliographical references (p. 125-127) and index.
Description
Summary:The work treats dynamical systems given by ordinary differential equations in the form $\frac{{dX^\varepsilon(t)}}{{dt}}=\varepsilon B(X^\varepsilon(t),Y^\varepsilon(t))$ where fast motions $Y^\varepsilon$ depend on the slow motion $X^\varepsilon$ (coupled with it) and they are either given by another differential equation $\frac{{dY^\varepsilon(t)}}{{dt}}=b(X^\varepsilon(t), Y^\varepsilon(t))$ or perturbations of an appropriate parametric family of Markov processes with freezed slow variables.
Item Description:"Volume 201, number 944 (third of 5 numbers )."
Physical Description:vii, 129 p. ; 26 cm.
Bibliography:Includes bibliographical references (p. 125-127) and index.
ISBN:9780821844250
0821844253