Introduction to scientific programming and simulation using R /

Saved in:
Bibliographic Details
Author / Creator:Jones, Owen (Owen Dafydd)
Imprint:Boca Raton, FL : CRC Press, c2009.
Description:xix, 453 p. : ill., charts ; 25 cm.
Language:English
Series:Chapman & Hall book
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7798353
Hidden Bibliographic Details
Varying Form of Title:Scientific programming and simulation using R
Other authors / contributors:Maillardet, Robert.
Robinson, Andrew (Andrew P.)
ISBN:9781420068726
1420068725
Notes:"A Chapman & Hall Book."
"This volume is not about the application of statistical techniques, but rather shows how to turn algorithms into code. It is for those who want to make tools, not just use them."--P. [4] of cover.
Includes bibliographical references (p. ix-x) and index.
Table of Contents:
  • Preface
  • I. Programming
  • 1. Setting up
  • 1.1. Installing R
  • 1.2. Starting R
  • 1.3. Working directory
  • 1.4. Writing scripts
  • 1.5. Help
  • 1.6. Supporting material
  • 2. R as a calculating environment
  • 2.1. Arithmetic
  • 2.2. Variables
  • 2.3. Functions
  • 2.4. Vectors
  • 2.5. Missing data
  • 2.6. Expressions and assignments
  • 2.7. Logical expressions
  • 2.8. Matrices
  • 2.9. The workspace
  • 2.10. Exercises
  • 3. Basic programming
  • 3.1. Introduction
  • 3.2. Branching with if
  • 3.3. Looping with for
  • 3.4. Looping with while
  • 3.5. Vector-based programming
  • 3.6. Program flow
  • 3.7. Basic debugging
  • 3.8. Good programming habits
  • 3.9. Exercises
  • 4. I/O: Input and Output
  • 4.1. Text
  • 4.2. Input from a file
  • 4.3. Input from the keyboard
  • 4.4. Output to a file
  • 4.5. Plotting
  • 4.6. Exercises
  • 5. Programming with functions
  • 5.1. Functions
  • 5.2. Scope and its consequences
  • 5.3. Optional arguments and default values
  • 5.4. Vector-based programming using functions
  • 5.5. Recursive programming
  • 5.6. Debugging functions
  • 5.7. Exercises
  • 6. Sophisticated data structures
  • 6.1. Factors
  • 6.2. Dataframes
  • 6.3. Lists
  • 6.4. The apply family
  • 6.5. Exercises
  • 7. Better graphics
  • 7.1. Introduction
  • 7.2. Graphics parameters: par
  • 7.3. Graphical augmentation
  • 7.4. Mathematical typesetting
  • 7.5. Permanence
  • 7.6. Grouped graphs: lattice
  • 7.7. 3D-plots
  • 7.8. Exercises
  • 8. Pointers to further programming techniques
  • 8.1. Packages
  • 8.2. Frames and environments
  • 8.3. Debugging again
  • 8.4. Object-oriented programming: S3
  • 8.5. Object-oriented programming: S4
  • 8.6. Compiled code
  • 8.7. Further reading
  • 8.8. Exercises
  • II. Numerical techniques
  • 9. Numerical accuracy and program efficiency
  • 9.1. Machine representation of numbers
  • 9.2. Significant digits
  • 9.3. Time
  • 9.4. Loops versus vectors
  • 9.5. Memory
  • 9.6. Caveat
  • 9.7. Exercises
  • 10. Root-finding
  • 10.1. Introduction
  • 10.2. Fixed-point iteration
  • 10.3. The Newton-Raphson method
  • 10.4. The secant method
  • 10.5. The bisection method
  • 10.6. Exercises
  • 11. Numerical integration
  • 11.1. Trapezoidal rule
  • 11.2. Simpson's rule
  • 11.3. Adaptive quadrature
  • 11.4. Exercises
  • 12. Optimisation
  • 12.1. Newton's method for optimisation
  • 12.2. The golden-section method
  • 12.3. Multivariate optimisation
  • 12.4. Steepest ascent
  • 12.5. Newton's method in higher dimensions
  • 12.6. Optimisation in R and the wider world
  • 12.7. A curve fitting example
  • 12.8. Exercises
  • III. Probability and statistics
  • 13. Probability
  • 13.1. The probability axioms
  • 13.2. Conditional probability
  • 13.3. Independence
  • 13.4. The Law of Total Probability
  • 13.5. Bayes' theorem
  • 13.6. Exercises
  • 14. Random variables
  • 14.1. Definition and distribution function
  • 14.2. Discrete and continuous random variables
  • 14.3. Empirical cdf's and histograms
  • 14.4. Expectation and finite approximations
  • 14.5. Transformations
  • 14.6. Variance and standard deviation
  • 14.7. The Weak Law of Large Numbers
  • 14.8. Exercises
  • 15. Discrete random variables
  • 15.1. Discrete random variables in R
  • 15.2. Bernoulli distribution
  • 15.3. Binomial distribution
  • 15.4. Geometric distribution
  • 15.5. Negative binomial distribution
  • 15.6. Poisson distribution
  • 15.7. Exercises
  • 16. Continuous random variables
  • 16.1. Continuous random variables in R
  • 16.2. Uniform distribution
  • 16.3. Lifetime models: exponential and Weibull
  • 16.4. The Poisson process and the gamma distribution
  • 16.5. Sampling distributions: normal, X2, and t
  • 16.6. Exercises
  • 17. Parameter Estimation
  • 17.1. Point Estimation
  • 17.2. The Central Limit Theorem
  • 17.3. Confidence intervals
  • 17.4. Monte-Carlo confidence intervals
  • 17.5. Exercises
  • IV. Simulation
  • 18. Simulation
  • 18.1. Simulating iid uniform samples
  • 18.2. Simulating discrete random variables
  • 18.3. Inversion method for continuous rv
  • 18.4. Rejection method for continuous rv
  • 18.5. Simulating normals
  • 18.6. Exercises
  • 19. Monte-Carlo integration
  • 19.1. Hit-and-miss method
  • 19.2. (Improved) Monte-Carlo integration
  • 19.3. Exercises
  • 20. Variance reduction
  • 20.1. Antithetic sampling
  • 20.2. Importance sampling
  • 20.3. Control variates
  • 20.4. Exercises
  • 21. Case studies
  • 21.1. Introduction
  • 21.2. Epidemics
  • 21.3. Inventory
  • 21.4. Seed dispersal
  • 22. Student projects
  • 22.1. The level of a dam
  • 22.2. Roulette
  • 22.3. Buffon's needle and cross
  • 22.4. Insurance risk
  • 22.5. Squash
  • 22.6. Stock prices
  • Glossary of R commands
  • Programs and functions developed in the text
  • Index