Potential analysis of stable processes and its extensions /

Saved in:
Bibliographic Details
Imprint:Berlin : Springer, c2009.
Description:ix, 187 p. : ill. ; 24 cm.
Language:English
Series:Lecture notes in mathematics ; 1980
Lecture notes in mathematics (Springer-Verlag) ; 1980.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7805335
Hidden Bibliographic Details
Other authors / contributors:Bogdan, Krzysztof.
Graczyk, P. (Piotr)
Stos, Andrzej.
SpringerLink (Online service)
ISBN:9783642021404
3642021409
Notes:Includes bibliographical references (p. 177-183) and index.
Table of Contents:
  • 1. Introduction
  • 1.1. Bases of Potential Theory of Stable Processes
  • 1.1.1. Classical Potential Theory
  • 1.1.2. Potential Theory of the Riesz Kernel
  • 1.1.3. Green Function and Poisson Kernel of &Delta ¿/2
  • 1.1.4. Subordinate Brownian Motions
  • 1.2. Outline of the Book
  • 2. Boundary Potential Theory for Schrödinger Operators Based on Fractional Laplacian
  • 2.1. Introduction
  • 2.2. Boundary Harnack Principle
  • 2.3. Approximate Factorization of Green Function
  • 2.4. Schrodinger Operator and Conditional Gauge Theorem
  • 3. Nontangential Convergence for ¿-harmonic Functions
  • 3.1. Introduction
  • 3.2. Basic Definitions and Properties
  • 3.3. Relative Fatou Theorem for ¿-Harmonic Functions
  • 3.4. Extensions to Other Processes
  • 4. Eigenvalues and Eigenfunctions for Stable Processes
  • 4.1. Introduction
  • 4.2. Intrinsic Ultracontractivity (IU)
  • 4.3. Steklov Problem
  • 4.4. Eigenvalue Estimates
  • 4.5. Generalized Isoperimetric Inequalities
  • 5. Potential Theory of Subordinate Brownian Motion
  • 5.1. Introduction
  • 5.2. Subordinators
  • 5.2.1. Special Subordinators and Complete Bernstein Functions
  • 5.2.2. Examples of Subordinators
  • 5.2.3. Asymptotic Behavior of the Potential, Lévy and Transition Densities
  • 5.3. Subordinate Brownian Motion
  • 5.3.1. Definitions and Technical Lemma
  • 5.3.2. Asymptotic Behavior of the Green Function
  • 5.3.3. Asymptotic Behavior of the Jumping Function
  • 5.3.4. Transition Densities of Symmetric Geometric Stable Processes
  • 5.4. Harnack Inequality for Subordinate Brownian Motion
  • 5.4.1. Capacity and Exit Time Estimates for Some Symmetric Lévy Processes
  • 5.4.2. Krylov-Safonov-type Estimate
  • 5.4.3. Proof of Harnack Inequality
  • 5.5. Subordinate Killed Brownian Motion
  • 5.5.1. Definitions
  • 5.5.2. Representation of Excessive and Harmonic Functions of Subordinate Process
  • 5.5.3. Harnack Inequality for Subordinate Process
  • 5.5.4. Martin Boundary of Subordinate Process
  • 5.5.5. Boundary Harnack Principle for Subordinate Process
  • 5.5.6. Sharp Bounds for the Green Function and the Jumping Function of Subordinate Process
  • Bibliography
  • Index