Biophysical bone behavior : principles and applications /

Saved in:
Bibliographic Details
Author / Creator:Behari, Jitendra.
Imprint:Singapore ; Chichester, UK ; Hoboken, NJ : John Wiley, c2009.
Description:x, 483 p. : ill. ; 26 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7885303
Hidden Bibliographic Details
ISBN:9780470824009 (hbk. : alk. paper)
047082400X (hbk. : alk. paper)
Notes:Includes bibliographical references (p. [389]-478) and index.
Table of Contents:
  • Preface
  • Acknowledgements
  • About the Book
  • 1. Elements of Bone Biophysics
  • 1.1. Introduction
  • 1.2. Structural Aspect of Bone
  • 1.2.1. Elementary Constituents of Bone
  • 1.2.2. The Fibers
  • 1.2.3. Collagen Synthesis
  • 1.2.4. Bone Matrix (Inorganic Component)
  • 1.3. Classification of Bone Tissues
  • 1.3.1. Compact Bone
  • 1.3.2. Fine Cancellous Bone
  • 1.3.3. Coarse Cancellous Bone
  • 1.4. Lamellation
  • 1.4.1. The Cement
  • 1.5. Role of Bone Water
  • 1.6. Bone Metabolism
  • 1.6.1. Ca and P Metabolism
  • 1.7. Osteoporosis
  • 1.8. Bone Cells
  • 1.8.1. Osteoblasts
  • 1.8.1. Osteoblast Differentiation
  • 1.8.1. Osteoclast
  • 1.8.1. Osteoclast Differentiation
  • 1.8.1. The Osteocytes
  • 1.8.1. Mathematical Formulation
  • 1.9. Bone Remodeling
  • 1.10. Biochemical Markers of Bone and Collagen
  • 1.11. Summary
  • 2. Piezoelectricity in Bone
  • 2.1. Introduction
  • 2.2. tPiezoelectric Effect
  • 2.2.1. Properties Relating to Piezoelectricity
  • 2.3. Physical Concept of Piezoelectricity
  • 2.3.1. Piezoelectric Theory
  • 2.4. Sound Propagated in a Piezoelectric Medium
  • 2.5. Equivalent Single-Crystal Structure of Bone
  • 2.6. Piezoelectric Properties of Dry Compact Bones
  • 2.6.1. Piezoelectric Properties of Dry and Wet Collagens
  • 2.6.2. Measurement of Piezoelectricity in Bone
  • 2.7. Bone Structure and Piezoelectric Properties
  • 2.8. Piezoelectric Transducers
  • 2.8.1. Transducer Vibration
  • 2.8.2. Transverse-Effect Transducer
  • 2.9. Ferroelectricity in Bone
  • 2.9.1. Experimental Details
  • 2.10. Two-Phase Mineral-Filled Plastic Composites
  • 2.10.1. Material Properties
  • 2.10.2. Bone Mechanical Properties
  • 2.11. Mechanical properties of Cancellous Bone: Microscopic View
  • 2.12. Ultrasound and Bone Behavior
  • 2.12.1. Biochemical Coupling
  • 2.13. Traveling Wave Characteristics
  • 2.14. Viscoelasticity in Bone
  • 2.15. Discussion
  • 3. Bioelectric Phenomena in Bone
  • 3.1. Macroscopic Stress-Generated Potentials of Moist Bone
  • 3.2. Mechanism of Biopotential Generation
  • 3.3. Stress-Generated Potentials (SGPs) in Bone
  • 3.4. Streaming Potentials and Currents of Normal Cortical Bone: Macroscopic Approach
  • 3.4.1. Streraming Potential and Current Dependence on Bone Structure and Composition: Macroscopic View
  • 3.5. Microscopic Potentials and Models of SP Generation in Bone
  • 3.6. Stress-Generated Fields of Trabecular Bone
  • 3.7. Biopotential and Electrostimulation in Bone
  • 3.7.1. Electrode Implantation
  • 3.7.2. Cotrol Data
  • 3.7.3. Pulsating Fields
  • 3.7.4. DC Stimulation
  • 3.7.5. Electromagnetic Field (50 Hz) Stimulation Along with Radio Frequency Field Coupling
  • 3.7.6. Continuous Fields
  • 3.7.7. Impedance Measurements
  • 3.8. Orgin of Various Bioelectric Potentials in Bone
  • 4. Solid State Bone Behavior
  • 4.1. Introduction
  • 4.2. Electrical Conduction in Bone
  • 4.2.1. Bone as a Semiconductor
  • 4.2.2. Bone Dielectric Properties
  • 4.3. Microwave Conductivity in Bone
  • 4.4. Electret Phenomena
  • 4.4.1. Thermo Electret
  • 4.4.2. Electro Electret
  • 4.4.3. Magneto Electret
  • 4.5. Hall Effect in Bone
  • 4.5.1. Hall Effect, Hall Mobility and Drift Mobility
  • 4.5.2. Magnetic Field Dependence of the Hall Coefficient in Apatite
  • 4.6. Photovoltaic Effect
  • 4.7. PN Junction Phenomena in Bone
  • 4.7.1. Breakdown Phenomenon of PN Junction
  • 4.7.2. Behavior of the PN Junction Under IR and UV Conditions
  • 4.7.3. Photoelectromagnetic (PEM) Effect
  • 4.7.4. Life Time of Charge Carriers
  • 4.8. Bone Electrical Parameters in Microstrip Line Configuration
  • 4.8.1. Theoretical Formulation
  • 4.9. Bone Physical Properties and Ultrasonic Transducer
  • 5. Bioelectric Phenomena: Electrostimulation and Fracture Healing
  • 5.1. Introduction
  • 5.2. Biophysics of Fracture
  • 5.2.1. Mechanisms of Bone Fracture
  • 5.2.1. Mechanical Stimulation to Enhance Fracture Repair
  • 5.3. Bone Fracture Healing
  • 5.3.1. Histologic Fractures
  • 5.3.2. Growth Hormone (GH) Effect on Fracture Healing
  • 5.3.3. Biological Principles
  • 5.3.4. Cell Array Model for Repairing or Remodeling Bone
  • 5.4. Electromagnetic Field and Fracture Healing
  • 5.4.1. Methods in Bone Fracture Healing
  • 5.4.2. Stimulation by Constant Direct Current Sources
  • 5.4.3. Pulsed Electromagnetic Fields (PEMFs)
  • 5.4.4. Inductive Coupling
  • 5.4.5. Capacitive Coupling
  • 5.4.6. Mechanism of Action
  • 5.4.7. Mechanism of PEMF Interaction at the Cellular Level
  • 5.4.8. Spatial Coherence
  • 5.4.9. Effects of EMFs on Signal Transduction in Bone
  • 5.4.10. The Biophysical Interaction Concept of Window
  • 5.4.11. Mechanisms for EMF Effects on Bone Signal Transduction
  • 5.5. Venous Pressure and Bone Formation
  • 5.6. Ultrasound and Bone Repair
  • 5.6.1. Ultrasonic Attenuation
  • 5.6.2. Measurements on Human Tibiae
  • 5.6.3. Measurements on Models
  • 5.7. SNR Analysis for EMF, US and SGP Signals
  • 5.7.1. Ununited Fractures
  • 5.8. Low Energy He-Ne Laser Irradiation and Bone
  • 5.9. Electrostimulation of Osteoporosis
  • 5.10. Other Techniques: Use of Nanoparticles
  • 5.11. Possible Mechanism Involved in Osteoporosis
  • 6. Biophysical Parameters Affecting Osteoporosis
  • 6.1. Introduction
  • 6.1.1. Osteoporosis in Women
  • 6.1.2. Osteoporosis in Men
  • 6.1.3. Osteoporosis Types
  • 6.1.4. Spinal Cord Injury (SCI)
  • 6.1.5. Effect of Microgravity
  • 6.1.6. Bone Loss
  • 6.1.7. Secondary Osteoporosis
  • 6.2. Senile and Postmenopausal Osteoporosis
  • 6.2.1. Type of Bone Pathogenesis
  • 6.2.2. Risk Factors for Fractures
  • 6.2.3. Fracture Risk Models
  • 6.3. Theoretical Analysis of Fracture prediction by Distant BMD Measurement Sites
  • 6.4. Markers of Osteoporosis
  • 6.4.1. Structural Changes
  • 6.4.2. Biophysical Parameters
  • 6.5. Osteoporosis Inverventions
  • 6.6. Role of Estrogen
  • 6.6.1. Steroid-Induced Osteoporosis
  • 6.6.2. Impact of HRT on Osteoporotic Fractures
  • 6.6.3. Role of Estrogen-Progesterone Combination
  • 6.7. Glucocorticoid
  • 6.8. Vitamin D and Osteoporosis
  • 6.9. Role of Calcitonin
  • 6.10. Calcitonin and Glucocorticoids
  • 6.11. Parathyroid Hormone (PTH)
  • 6.12. Role of Prostaglandins
  • 6.13. Thiazide Diuretics (TD)
  • 6.14. Effects of Fluoride
  • 6.15. Role of Growth Hormone (GH)
  • 6.16. Cholesterol
  • 6.17. Interleukin 1 (IL-1)
  • 6.18. Bisphosphonates (BPs)
  • 6.19. Adipocyte Hormones
  • 6.20. Mechanism of Action of Antiresorptive Agents
  • 6.21. Genetic Studies of Osteoporosis
  • 6.22. Nutritional Aspects in Osteoporosis
  • 6.22.1. Biochemical Markers
  • 6.22.2. Salt Intake
  • 6.22.3. Calcium
  • 6.22.4. Protein
  • 6.22.5. Lactose
  • 6.22.6. Phosphorous
  • 6.22.7. Lymphotoxin
  • 6.22.8. Dietary Fiber, Oxalic Acid and Phytic Acid
  • 6.22.9. Alcohol
  • 6.22.10. Caffeine
  • 6.22.11. Other Factors
  • 6.23. Osteoporosis: Prevention and Treatment
  • 6.23.1. Gene Therapy
  • 6.24. Non-Invasive Techniques
  • 6.24.1. Electrical Stimulation and Osteoporosis
  • 6.24.2. Ultrasonic Methods
  • 6.25. Conclusion
  • 7. Non-Invasive Techniques used to Measure Osteoporosis
  • 7.1. Introduction
  • 7.2. Measurement of the Mineral Content
  • 7.2.1. Clinical Measurements
  • 7.2.2. Calibration and Accuracy
  • 7.2.3. Limitations
  • 7.2.4. Singh Index
  • 7.3. Bone Densitometric Methods
  • 7.3.1. Radiographic Methods
  • 7.4. X-ray Tomography
  • 7.5. Skeleton Roentgenology
  • 7.6. Metacarpal Index
  • 7.7. Analysis of Radiographic Methods
  • 7.8. Direct Photon Absorption Method
  • 7.8.1. Theory
  • 7.8.1. Clinical Applications
  • 7.9. Limitations of the Method
  • 7.10. Dual-Photon Absorptiometry (DPA)
  • 7.10.1. Theoretical Background
  • 7.10.2. Procedure
  • 7.10.3. Nature of Attenuation
  • 7.10.4. Reproducibility
  • 7.11. computed Tomography (CT)
  • 7.11.1. Instrumentation and Clinical Procedure
  • 7.11.2. Quantitative Computed Tomography (QCT)
  • 7.12. Modification of CT Methods
  • 7.12.1. CT Methods: Benefits and Risks
  • 7.12.2. Discussion
  • 7.13. Methods Based on Compton Scattering
  • 7.13.1. Technique
  • 7.14. Coherent and Compton Scattering
  • 7.14.1. Clinical Applications
  • 7.15. Dual Energy Technique
  • 7.15.1. Dual Energy X-ray Absorptiometry (DEXA)
  • 7.15.2. Theoretical Formulation and Instrumentation
  • 7.15.3. Technical Details
  • 7.15.4. Simulation Studies
  • 7.16. Neutron Activation Analysis
  • 7.16.1. Technique
  • 7.16.2. Site Choice
  • 7.16.3. Dose
  • 7.16.4. Limitations
  • 7.17. Infrasound Method for Bone Mass Measurements
  • 7.17.1. The Ultrasonic Measurement: Concepts and Technique
  • 7.17.2. Stress Wave Propagation in Bone and its Clinical Use
  • 7.17.3. Measurement of Bone parameters
  • 7.17.4. Ultrasound System
  • 7.17.5. Procedure for Obtaining Patient Data
  • 7.17.6. Analysis of Patient Data
  • 7.17.7. Verification of the In Vivo Bone Parameters
  • 7.18. Other Techniques
  • 7.18.1. Magnetic Resonance Imaging (MRI)
  • 7.19. Relative Advantages and Disadvantages of the Various Techniques
  • References
  • Index