Biophysical bone behavior : principles and applications /
Saved in:
Author / Creator: | Behari, Jitendra. |
---|---|
Imprint: | Singapore ; Chichester, UK ; Hoboken, NJ : John Wiley, c2009. |
Description: | x, 483 p. : ill. ; 26 cm. |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/7885303 |
Table of Contents:
- Preface
- Acknowledgements
- About the Book
- 1. Elements of Bone Biophysics
- 1.1. Introduction
- 1.2. Structural Aspect of Bone
- 1.2.1. Elementary Constituents of Bone
- 1.2.2. The Fibers
- 1.2.3. Collagen Synthesis
- 1.2.4. Bone Matrix (Inorganic Component)
- 1.3. Classification of Bone Tissues
- 1.3.1. Compact Bone
- 1.3.2. Fine Cancellous Bone
- 1.3.3. Coarse Cancellous Bone
- 1.4. Lamellation
- 1.4.1. The Cement
- 1.5. Role of Bone Water
- 1.6. Bone Metabolism
- 1.6.1. Ca and P Metabolism
- 1.7. Osteoporosis
- 1.8. Bone Cells
- 1.8.1. Osteoblasts
- 1.8.1. Osteoblast Differentiation
- 1.8.1. Osteoclast
- 1.8.1. Osteoclast Differentiation
- 1.8.1. The Osteocytes
- 1.8.1. Mathematical Formulation
- 1.9. Bone Remodeling
- 1.10. Biochemical Markers of Bone and Collagen
- 1.11. Summary
- 2. Piezoelectricity in Bone
- 2.1. Introduction
- 2.2. tPiezoelectric Effect
- 2.2.1. Properties Relating to Piezoelectricity
- 2.3. Physical Concept of Piezoelectricity
- 2.3.1. Piezoelectric Theory
- 2.4. Sound Propagated in a Piezoelectric Medium
- 2.5. Equivalent Single-Crystal Structure of Bone
- 2.6. Piezoelectric Properties of Dry Compact Bones
- 2.6.1. Piezoelectric Properties of Dry and Wet Collagens
- 2.6.2. Measurement of Piezoelectricity in Bone
- 2.7. Bone Structure and Piezoelectric Properties
- 2.8. Piezoelectric Transducers
- 2.8.1. Transducer Vibration
- 2.8.2. Transverse-Effect Transducer
- 2.9. Ferroelectricity in Bone
- 2.9.1. Experimental Details
- 2.10. Two-Phase Mineral-Filled Plastic Composites
- 2.10.1. Material Properties
- 2.10.2. Bone Mechanical Properties
- 2.11. Mechanical properties of Cancellous Bone: Microscopic View
- 2.12. Ultrasound and Bone Behavior
- 2.12.1. Biochemical Coupling
- 2.13. Traveling Wave Characteristics
- 2.14. Viscoelasticity in Bone
- 2.15. Discussion
- 3. Bioelectric Phenomena in Bone
- 3.1. Macroscopic Stress-Generated Potentials of Moist Bone
- 3.2. Mechanism of Biopotential Generation
- 3.3. Stress-Generated Potentials (SGPs) in Bone
- 3.4. Streaming Potentials and Currents of Normal Cortical Bone: Macroscopic Approach
- 3.4.1. Streraming Potential and Current Dependence on Bone Structure and Composition: Macroscopic View
- 3.5. Microscopic Potentials and Models of SP Generation in Bone
- 3.6. Stress-Generated Fields of Trabecular Bone
- 3.7. Biopotential and Electrostimulation in Bone
- 3.7.1. Electrode Implantation
- 3.7.2. Cotrol Data
- 3.7.3. Pulsating Fields
- 3.7.4. DC Stimulation
- 3.7.5. Electromagnetic Field (50 Hz) Stimulation Along with Radio Frequency Field Coupling
- 3.7.6. Continuous Fields
- 3.7.7. Impedance Measurements
- 3.8. Orgin of Various Bioelectric Potentials in Bone
- 4. Solid State Bone Behavior
- 4.1. Introduction
- 4.2. Electrical Conduction in Bone
- 4.2.1. Bone as a Semiconductor
- 4.2.2. Bone Dielectric Properties
- 4.3. Microwave Conductivity in Bone
- 4.4. Electret Phenomena
- 4.4.1. Thermo Electret
- 4.4.2. Electro Electret
- 4.4.3. Magneto Electret
- 4.5. Hall Effect in Bone
- 4.5.1. Hall Effect, Hall Mobility and Drift Mobility
- 4.5.2. Magnetic Field Dependence of the Hall Coefficient in Apatite
- 4.6. Photovoltaic Effect
- 4.7. PN Junction Phenomena in Bone
- 4.7.1. Breakdown Phenomenon of PN Junction
- 4.7.2. Behavior of the PN Junction Under IR and UV Conditions
- 4.7.3. Photoelectromagnetic (PEM) Effect
- 4.7.4. Life Time of Charge Carriers
- 4.8. Bone Electrical Parameters in Microstrip Line Configuration
- 4.8.1. Theoretical Formulation
- 4.9. Bone Physical Properties and Ultrasonic Transducer
- 5. Bioelectric Phenomena: Electrostimulation and Fracture Healing
- 5.1. Introduction
- 5.2. Biophysics of Fracture
- 5.2.1. Mechanisms of Bone Fracture
- 5.2.1. Mechanical Stimulation to Enhance Fracture Repair
- 5.3. Bone Fracture Healing
- 5.3.1. Histologic Fractures
- 5.3.2. Growth Hormone (GH) Effect on Fracture Healing
- 5.3.3. Biological Principles
- 5.3.4. Cell Array Model for Repairing or Remodeling Bone
- 5.4. Electromagnetic Field and Fracture Healing
- 5.4.1. Methods in Bone Fracture Healing
- 5.4.2. Stimulation by Constant Direct Current Sources
- 5.4.3. Pulsed Electromagnetic Fields (PEMFs)
- 5.4.4. Inductive Coupling
- 5.4.5. Capacitive Coupling
- 5.4.6. Mechanism of Action
- 5.4.7. Mechanism of PEMF Interaction at the Cellular Level
- 5.4.8. Spatial Coherence
- 5.4.9. Effects of EMFs on Signal Transduction in Bone
- 5.4.10. The Biophysical Interaction Concept of Window
- 5.4.11. Mechanisms for EMF Effects on Bone Signal Transduction
- 5.5. Venous Pressure and Bone Formation
- 5.6. Ultrasound and Bone Repair
- 5.6.1. Ultrasonic Attenuation
- 5.6.2. Measurements on Human Tibiae
- 5.6.3. Measurements on Models
- 5.7. SNR Analysis for EMF, US and SGP Signals
- 5.7.1. Ununited Fractures
- 5.8. Low Energy He-Ne Laser Irradiation and Bone
- 5.9. Electrostimulation of Osteoporosis
- 5.10. Other Techniques: Use of Nanoparticles
- 5.11. Possible Mechanism Involved in Osteoporosis
- 6. Biophysical Parameters Affecting Osteoporosis
- 6.1. Introduction
- 6.1.1. Osteoporosis in Women
- 6.1.2. Osteoporosis in Men
- 6.1.3. Osteoporosis Types
- 6.1.4. Spinal Cord Injury (SCI)
- 6.1.5. Effect of Microgravity
- 6.1.6. Bone Loss
- 6.1.7. Secondary Osteoporosis
- 6.2. Senile and Postmenopausal Osteoporosis
- 6.2.1. Type of Bone Pathogenesis
- 6.2.2. Risk Factors for Fractures
- 6.2.3. Fracture Risk Models
- 6.3. Theoretical Analysis of Fracture prediction by Distant BMD Measurement Sites
- 6.4. Markers of Osteoporosis
- 6.4.1. Structural Changes
- 6.4.2. Biophysical Parameters
- 6.5. Osteoporosis Inverventions
- 6.6. Role of Estrogen
- 6.6.1. Steroid-Induced Osteoporosis
- 6.6.2. Impact of HRT on Osteoporotic Fractures
- 6.6.3. Role of Estrogen-Progesterone Combination
- 6.7. Glucocorticoid
- 6.8. Vitamin D and Osteoporosis
- 6.9. Role of Calcitonin
- 6.10. Calcitonin and Glucocorticoids
- 6.11. Parathyroid Hormone (PTH)
- 6.12. Role of Prostaglandins
- 6.13. Thiazide Diuretics (TD)
- 6.14. Effects of Fluoride
- 6.15. Role of Growth Hormone (GH)
- 6.16. Cholesterol
- 6.17. Interleukin 1 (IL-1)
- 6.18. Bisphosphonates (BPs)
- 6.19. Adipocyte Hormones
- 6.20. Mechanism of Action of Antiresorptive Agents
- 6.21. Genetic Studies of Osteoporosis
- 6.22. Nutritional Aspects in Osteoporosis
- 6.22.1. Biochemical Markers
- 6.22.2. Salt Intake
- 6.22.3. Calcium
- 6.22.4. Protein
- 6.22.5. Lactose
- 6.22.6. Phosphorous
- 6.22.7. Lymphotoxin
- 6.22.8. Dietary Fiber, Oxalic Acid and Phytic Acid
- 6.22.9. Alcohol
- 6.22.10. Caffeine
- 6.22.11. Other Factors
- 6.23. Osteoporosis: Prevention and Treatment
- 6.23.1. Gene Therapy
- 6.24. Non-Invasive Techniques
- 6.24.1. Electrical Stimulation and Osteoporosis
- 6.24.2. Ultrasonic Methods
- 6.25. Conclusion
- 7. Non-Invasive Techniques used to Measure Osteoporosis
- 7.1. Introduction
- 7.2. Measurement of the Mineral Content
- 7.2.1. Clinical Measurements
- 7.2.2. Calibration and Accuracy
- 7.2.3. Limitations
- 7.2.4. Singh Index
- 7.3. Bone Densitometric Methods
- 7.3.1. Radiographic Methods
- 7.4. X-ray Tomography
- 7.5. Skeleton Roentgenology
- 7.6. Metacarpal Index
- 7.7. Analysis of Radiographic Methods
- 7.8. Direct Photon Absorption Method
- 7.8.1. Theory
- 7.8.1. Clinical Applications
- 7.9. Limitations of the Method
- 7.10. Dual-Photon Absorptiometry (DPA)
- 7.10.1. Theoretical Background
- 7.10.2. Procedure
- 7.10.3. Nature of Attenuation
- 7.10.4. Reproducibility
- 7.11. computed Tomography (CT)
- 7.11.1. Instrumentation and Clinical Procedure
- 7.11.2. Quantitative Computed Tomography (QCT)
- 7.12. Modification of CT Methods
- 7.12.1. CT Methods: Benefits and Risks
- 7.12.2. Discussion
- 7.13. Methods Based on Compton Scattering
- 7.13.1. Technique
- 7.14. Coherent and Compton Scattering
- 7.14.1. Clinical Applications
- 7.15. Dual Energy Technique
- 7.15.1. Dual Energy X-ray Absorptiometry (DEXA)
- 7.15.2. Theoretical Formulation and Instrumentation
- 7.15.3. Technical Details
- 7.15.4. Simulation Studies
- 7.16. Neutron Activation Analysis
- 7.16.1. Technique
- 7.16.2. Site Choice
- 7.16.3. Dose
- 7.16.4. Limitations
- 7.17. Infrasound Method for Bone Mass Measurements
- 7.17.1. The Ultrasonic Measurement: Concepts and Technique
- 7.17.2. Stress Wave Propagation in Bone and its Clinical Use
- 7.17.3. Measurement of Bone parameters
- 7.17.4. Ultrasound System
- 7.17.5. Procedure for Obtaining Patient Data
- 7.17.6. Analysis of Patient Data
- 7.17.7. Verification of the In Vivo Bone Parameters
- 7.18. Other Techniques
- 7.18.1. Magnetic Resonance Imaging (MRI)
- 7.19. Relative Advantages and Disadvantages of the Various Techniques
- References
- Index