Fuzzy image processing and applications with MATLAB /

Saved in:
Bibliographic Details
Author / Creator:Chaira, Tamalika.
Imprint:Boca Raton, FL : CRC Press/Taylor & Francis, c2010.
Description:xv, 213 p. : ill. (some col.) ; 25 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7921835
Hidden Bibliographic Details
Other authors / contributors:Ray, Ajoy K., 1954-
ISBN:9781439807088 (hardcover : alk. paper)
1439807086 (hardcover : alk. paper)
Notes:Includes bibliographical references and index.
Table of Contents:
  • Preface
  • Authors
  • 1. Fuzzy Subsets and Operations
  • 1.1. Introduction
  • 1.2. Concept of Fuzzy Subsets and Membership Function
  • 1.2.1. Membership Function
  • 1.3. Linguistic Hedges
  • 1.4. Operations on Fuzzy Sets
  • 1.5. Fuzzy Relations
  • 1.5.1. Composition of Two Fuzzy Relations
  • 1.5.2. Fuzzy Binary Relation
  • 1.5.3. Transitive Closure of Fuzzy Binary Relation
  • 1.6. Summary
  • References
  • 2. Image Processing in an Imprecise Environment
  • 2.1. Introduction
  • 2.2. Image as a Fuzzy Set
  • 2.3. Fuzzy Image Processing
  • 2.3.1. Foundations of Image Processing
  • 2.3.1.1. Fuzzy Geometry
  • 2.3.1.2. Measures of Fuzziness/Information
  • 2.3.1.3. Rule-Based Systems
  • 2.3.1.4. Fuzzy Clustering
  • 2.3.1.5. Fuzzy Mathematical Morphology
  • 2.3.1.6. Fuzzy Grammars
  • 2.4. Some Applications of Fuzzy Set Theory in Image Processing
  • 2.5. Summary
  • References
  • 3. Fuzzy Similarity Measure, Measure of Fuzziness, and Entropy
  • 3.1. Introduction
  • 3.2. Fuzzy Similarity and Distance Measures
  • 3.2.1. Examples of Fuzzy Distance Measures
  • 3.2.2. Fuzzy Divergence
  • 3.3. Examples of Similarity Measures
  • 3.3.1. Measure Based on Tversky's Model
  • 3.3.2. Similarity of Fuzzy Sets Based on Distance
  • 3.4. Measures of Fuzziness
  • 3.4.1. Index of Fuzziness
  • 3.4.2. Index of Nonfuzziness
  • 3.4.3. Yager's Measure
  • 3.5. Fuzzy Entropy
  • 3.5.1. Logarithmic Entropy
  • 3.5.2. Shannon Fuzzy Entropy
  • 3.5.3. Total Entropy
  • 3.5.4. Hybrid Entropy
  • 3.6. Geometry of Fuzzy Subsets
  • 3.7. Summary
  • References
  • 4. Fuzzy Image Preprocessing
  • 4.1. Introduction
  • 4.2. Contrast Enhancement
  • 4.3. Fuzzy Image Contrast Enhancement
  • 4.3.1. Contrast Improvement Using an Intensification Operator
  • 4.3.2. Contrast Improvement Using Fuzzy Histogram Hyperbolization
  • 4.3.3. Contrast Enhancement Using Fuzzy IF-THEN Rules
  • 4.3.4. Contrast Improvement Using a Fuzzy Expected Value
  • 4.3.5. Locally Adaptive Contrast Enhancement
  • 4.4. Filters
  • 4.5. Fuzzy Filters
  • 4.6. Summary
  • References
  • 5. Thresholding Detection in Fuzzy Images
  • 5.1. Introduction
  • 5.2. Threshold Detection Methods
  • 5.3. Types of Thresholding
  • 5.3.1. Global Thresholding
  • 5.3.2. Locally Adaptive Thresholding
  • 5.3.3. Iterative Thresholding
  • 5.3.4. Optimal Thresholding
  • 5.3.5. Multispectral Thresholding
  • 5.4. Thresholding Methods
  • 5.5. Types of Fuzzy Methods
  • 5.5.1. Gamma Membership Function
  • 5.5.1.1. Fuzzy Divergence
  • 5.5.1.2. Index of Fuzziness
  • 5.5.1.3. Fuzzy Similarity Measure
  • 5.6. Application of Thresholding
  • 5.7. Summary
  • References
  • 6. Fuzzy Match-Based Region Extraction
  • 6.1. Match-Based Region Extraction
  • 6.2. Back Projection Algorithm
  • 6.2.1. Swain and Ballard's Back Projection Algorithm
  • 6.2.2. Quadratic Confidence Back Projection
  • 6.2.3. Local Histogramming
  • 6.2.4. Binary Set Back Projection
  • 6.2.5. Single Element Quadratic Back Projection
  • 6.3. Fuzzy Region Extraction Methods
  • 6.3.1. Fuzzy Similarity Measures
  • 6.3.2. Fuzzy Measures in Region Extraction
  • 6.4. Summary
  • References
  • 7. Fuzzy Edge Detection
  • 7.1. Introduction
  • 7.2. Methods for Edge Detection
  • 7.2.1. Thresholding-Based Methods
  • 7.2.2. Boundary Method
  • 7.2.3. Hough Transform Method
  • 7.3. Fuzzy Methods
  • 7.3.1. Fuzzy Sobel Edge Detector
  • 7.3.2. Entropy-Based Fuzzy Edge Detection
  • 7.3.3. Fuzzy Template Based Edge Detector
  • 7.4. Summary
  • References
  • 8. Fuzzy Content-Based Image Retrieval
  • 8.1. Introduction
  • 8.2. Color Spaces
  • 8.3. Content-Based Color Image Retrieval
  • 8.3.1. Global-Based Approach
  • 8.3.2. Partition-Based Approach
  • 8.3.3. Regional-Based Approach
  • 8.4. Image Retrieval Model
  • 8.5. Fuzzy-Based Image Retrieval Methods
  • 8.5.1. Fuzzy Similarity-Based Retrieval Model
  • 8.5.2. Color Histogram-Based Retrieval
  • 8.5.3. Smoothed Histogram-Based Retrieval
  • 8.5.4. Fuzzy Similarity/Tversky's Measure-Based Retrieval Method
  • 8.5.4.1. Fuzzy Similarity Measures
  • 8.6. Summary
  • References
  • 9. Fuzzy Methods in Pattern Classification
  • 9.1. Introduction
  • 9.2. Decision Theoretic Pattern Classification Techniques
  • 9.2.1. Preliminaries of Unsupervised Classification
  • 9.3. Why a Fuzzy Classifier
  • 9.3.1. Limitations of Statistical Classifiers
  • 9.4. Fuzzy Set Theoretic Approach to Pattern Classification
  • 9.5. Fuzzy Supervised Learning Algorithm
  • 9.6. Fuzzy Partition
  • 9.6.1. Pattern Classification Using a Fuzzy Similarity Measure
  • 9.6.2. Fuzzy Similitude and Partitioning
  • 9.7. Fuzzy Unsupervised Pattern Classification
  • 9.8. Summary
  • References
  • 10. Application of Fuzzy Set Theory in Remote Sensing
  • 10.1. Introduction
  • 10.2. Why Fuzzy Techniques in Remote Sensing
  • 10.3. About the Remotely Sensed Data
  • 10.4. Classification of Remotely Sensed Data
  • 10.5. Fuzzy Sets in Remote Sensing Data Analysis
  • 10.6. Background Work in Neuro Fuzzy Computing in Remote Sensing
  • 10.7. Background Work on Fuzzy Sets in Remote Sensing
  • 10.8. Segmentation of Remote Sensing Images
  • 10.9. Fuzzy Multilayer Perceptron
  • 10.9.1. Fusion of Fuzzy Logic with Neural Networks
  • 10.9.2. Fuzzy MLP with Back-Propagation Learning
  • 10.9.3. Fuzzy Back-Propagation Classifier Architecture
  • 10.10. Fuzzy Counter-Propagation Network
  • 10.11. Fuzzy CPN for Classification of Remotely Sensed Data
  • 10.11.1. General Description of the Test Scenes
  • 10.11.2. Experimental Results
  • 10.12. Summary
  • References
  • 11. MATLABĀ® Programs
  • 11.1. Introduction
  • 11.2. MATLAB Examples
  • Problems
  • Index