Earthquake and volcano deformation /

Saved in:
Bibliographic Details
Author / Creator:Segall, Paul, 1954-
Imprint:Princeton, N.J. : Princeton University Press, c2010.
Description:xxiii, 432 p. : ill., maps ; 26 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7924660
Hidden Bibliographic Details
ISBN:9780691133027 (hardcover : alk. paper)
0691133026 (hardcover : alk. paper)
Notes:Includes bibliographical references and indexes.
Table of Contents:
  • Preface
  • Acknowledgments
  • Origins
  • 1. Deformation, Stress, and Conservation Laws
  • 1.1. Strain
  • 1.1.1. Strains in Curvilinear Coordinates
  • 1.2. Rotation
  • 1.3. Stress
  • 1.4. Coordinate Transformations
  • 1.5. Principal Strains and Stresses
  • 1.6. Compatibility Equations
  • 1.7. Conservation Laws
  • 1.7.1. Equilibrium Equations in Curvilinear Coordinates
  • 1.8. Constitutive Laws
  • 1.9. Reciprocal Theorem
  • 1.10. Problems
  • 1.11. References
  • 2. Dislocation Models of Strike-Slip Faults
  • 2.1. Full-Space Solution
  • 2.2. Half-Space Solution
  • 2.2.1. Coseismic Faulting
  • 2.2.2. Interseismic Deformation
  • 2.2.3. Postseismic Slip
  • 2.3. Distributed Slip
  • 2.4. Application to the San Andreas and Other Strike-Slip Faults
  • 2.5. Displacement at Depth
  • 2.6. Summary and Perspective
  • 2.7. Problems
  • 2.8. References
  • 3. Dip-Slip Faults and Dislocations in Three Dimensions
  • 3.1. Volterra's Formula
  • 3.1.1. Body Force Equivalents and Moment Tensors
  • 3.2. Screw Dislocations
  • 3.3. Two-Dimensional Edge Dislocations
  • 3.3.1. Dipping Fault
  • 3.4. Coseismic Deformation Associated with Dipping Faults
  • 3.5. Displacements and Stresses Due to Edge Dislocation at Depth
  • 3.6. Dislocations in Three Dimensions
  • 3.6.1. Full-Space Green's Functions
  • 3.6.2. Half-Space Green's Functions
  • 3.6.3. Point-Source Dislocations
  • 3.6.4. Finite Rectangular Dislocations
  • 3.6.5. Examples
  • 3.6.6. Distributed Slip
  • 3.7. Strain Energy Change Due to Faulting
  • 3.8. Summary and Perspective
  • 3.9. Problems
  • 3.10. References
  • 4. Crack Models of Faults
  • 4.1. Boundary Integral Method
  • 4.1.1. Inversion of the Integral Equation
  • 4.2. Displacement on the Earth's Surface
  • 4.3. A Brief Introduction to Fracture Mechanics
  • 4.4. Nonsingular Stress Distributions
  • 4.5. Comparison of Slip Distributions and Surface Displacements
  • 4.6. Boundary Element Methods
  • 4.7. Fourier Transform Methods
  • 4.8. Some Three-Dimensional Crack Results
  • 4.9. Summary and Perspective
  • 4.10. Problems
  • 4.11. References
  • 5. Elastic Heterogeneity
  • 5.1. Long Strike-Slip Fault Bounding Two Media
  • 5.2. Strike-Slip Fault within a Compliant Fault Zone
  • 5.3. Strike-Slip Fault beneath a Layer
  • 5.4. Strike-Slip within a Layer over Half-Space
  • 5.5. Propagator Matrix Methods
  • 5.5.1. The Propagator Matrix for Antiplane Deformation
  • 5.5.2. Vertical Fault in a Homogeneous Half-Space
  • 5.5.3. Vertical Fault within Half-Space beneath a Layer
  • 5.5.4. Vertical Fault in Layer over Half-Space
  • 5.5.5. General Solution for an Arbitrary Number of Layers
  • 5.5.6. Displacements and Stresses at Depth
  • 5.5.7. Propagator Methods for Plane Strain
  • 5.6. Propagator Solutions in Three Dimensions
  • 5.7. Approximate Solutions for Arbitrary Variations in Properties
  • 5.7.1. Variations in Shear Modulus
  • 5.7.2. Screw Dislocation
  • 5.7.3. Edge Dislocation
  • 5.8. Summary and Perspective
  • 5.9. Problems
  • 5.10. References
  • 6. Postseismic Relaxation
  • 6.1. Elastic Layer over Viscous Channel
  • 6.2. Viscoelasticity
  • 6.2.1. Correspondence Principle
  • 6.3. Strike-Slip Fault in an Elastic Plate Overlying a Viscoelastic Half-Space
  • 6.3.1. Stress in Plate and Half-Space
  • 6.4. Strike-Slip Fault in Elastic Layer Overlying a Viscoelastic Channel
  • 6.5. Dip-Slip Faulting
  • 6.5.1. Examples
  • 6.6. Three-Dimensional Calculations
  • 6.7. Summary and Perspective
  • 6.8. Problems
  • 6.9. References
  • 7. Volcano Deformation
  • 7.1. Spherical Magma Chamber
  • 7.1.1. Center of Dilatation
  • 7.1.2. Volume of the Uplift, Magma Chamber, and Magma
  • 7.2. Ellipsoidal Magma Chambers
  • 7.3. Magmatic Pipes and Conduits
  • 7.4. Dikes and Sills
  • 7.4.1. Crack Models of Dikes and Sills
  • 7.4.2. Surface Fracturing and Dike Intrusion
  • 7.5. Other Magma Chamber Geometries
  • 7.6. Viscoelastic Relaxation around Magma Chambers
  • 7.7. Summary and Perspective
  • 7.8. Problems
  • 7.9. References
  • 8. Topography and Earth Curvature
  • 8.1. Scaling Considerations
  • 8.2. Implementation Considerations
  • 8.3. Center of Dilatation beneath a Volcano
  • 8.4. Earth's Sphericity
  • 8.5. Summary and Perspective
  • 8.6. Problems
  • 8.7. References
  • 9. Gravitational Effects
  • 9.1. Nondimensional Form of Equilibrium Equations
  • 9.2. Inclusion in Propagator Matrix Formulation
  • 9.3. Surface Gravity Approximation
  • 9.4. Gravitational Effects in Viscoelastic Solutions
  • 9.4.1. Incompressible Half-Space
  • 9.4.2. No-Buoyancy Approximation
  • 9.4.3. Wang Approach
  • 9.4.4. Comparison of Different Viscoelastic Models
  • 9.4.5. Relaxed Viscoelastic Response
  • 9.5. Changes in Gravity Induced by Deformation
  • 9.5.1. Gravity Changes and Volcano Deformation
  • 9.5.2. An Example from Long Valley Caldera, California
  • 9.6. Summary and Perspective
  • 9.7. Problems
  • 9.8. References
  • 10. Poroelastic Effects
  • 10.1. Constitutive Laws
  • 10.1.1. Macroscopic Description
  • 10.1.2. Micromechanical Description
  • 10.2. Field Equations
  • 10.3. Analogy to Thermoelasticity
  • 10.4. One-Dimensional Deformation
  • 10.4.1. Step Load on the Free Surface
  • 10.4.2. Time-Varying Fluid Load on the Free Surface
  • 10.5. Dislocations in Two Dimensions
  • 10.6. Inflating Magma Chamber in a Poroelastic Half-Plane
  • 10.7. Cumulative Poroelastic Deformation in Three Dimensions
  • 10.8. Specified Pore Pressure Change
  • 10.9. Summary and Perspective
  • 10.10. Problems
  • 10.11. References
  • 11. Fault Friction
  • 11.1. Slip-Weakening Friction
  • 11.2. Velocity-Weakening Friction
  • 11.3. Rate and State Friction
  • 11.3.1. Linearized Stability Analysis
  • 11.4. Implications for Earthquake Nucleation
  • 11.5. Nonlinear Stability Analysis
  • 11.6. Afterslip
  • 11.7. Transient Slip Events
  • 11.8. Summary and Perspective
  • 11.9. Problems
  • 11.10. References
  • 12. Interseismic Deformation and Plate Boundary Cycle Models
  • 12.1. Elastic Dislocation Models
  • 12.1.1. Dip-Slip Faults
  • 12.2. Plate Motions
  • 12.3. Elastic Block Models
  • 12.4. Viscoelastic Cycle Models
  • 12.4.1. Viscoelastic Strike-Slip Earthquake Cycle Models
  • 12.4.2. Comparison to Data from San Andreas Fault
  • 12.4.3. Viscoelastic Models with Stress-Driven Deep-Fault Creep
  • 12.4.4. Viscoelastic Cycle Models for Dipping Faults
  • 12.5. Rate-State Friction Earthquake Cycle Models
  • 12.6. Summary and Perspective
  • 12.7. Problems
  • 12.8. References
  • Appendix A. Integral Transforms
  • A.1. Fourier Transforms
  • A.2. Laplace Transforms
  • A.3. References
  • Appendix B. A Solution of the Diffusion Equation
  • Appendix C. Displacements Due to Crack Model of Strike-Slip Fault by Contour Integration
  • Index