Quantum field theory of many-body systems : from the origin of sound to an origin of light and electrons /

Saved in:
Bibliographic Details
Author / Creator:Wen, Xiao-Gang.
Imprint:Oxford : Oxford University Press, 2007.
Description:1 online resouece (xiii, 505 p.) : ill.
Language:English
Series:Oxford graduate texts
Oxford graduate texts
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7995963
Hidden Bibliographic Details
Varying Form of Title:Quantum field theory of many body systems
ISBN:019922725X (pbk.)
9780199227259 (pbk.)
Notes:Description based on print version record.
Originally published: 2004.
Includes bibliographical references.
Other form:Print versdion: Wen, Xiao-Gang. Quantum field theory of many-body systems. Oxford : Oxford University Press, 2007 9780199227259
Table of Contents:
  • 1. Introduction
  • 1.1. More is different
  • 1.2. 'Elementary' particles and physics laws
  • 1.3. Corner-stones of condensed matter physics
  • 1.4. Topological order and quantum order
  • 1.5. Origin of light and fermions
  • 1.6. Novelty is more important than correctness
  • 1.7. Remarks: evolution of the concept of elementary particles
  • 2. Path integral formulation of quantum mechanics
  • 2.1. Semiclassical picture and path integral
  • 2.2. Linear responses and correlation functions
  • 2.3. Quantum spin, the Berry phase, and the path integral
  • 2.4. Applications of the path integral formulation
  • 3. Interacting boson systems
  • 3.1. Free boson systems and second quantization
  • 3.2. Mean-field theory of a superfluid
  • 3.3. Path integral approach to interacting boson systems
  • 3.4. Superfluid phase at finite temperatures
  • 3.5. Renormalization group
  • 3.6. Boson superfluid to Mott insulator transition
  • 3.7. Superfluidity and superconductivity
  • 3.8. Perturbative calculation of the thermal potential
  • 4. Free fermion systems
  • 4.1. Many-fermion systems
  • 4.2. Free fermion Green's function
  • 4.3. Two-body correlation functions and linear responses
  • 4.4. Quantized Hall conductance in insulators
  • 5. Interacting fermion systems
  • 5.1. Orthogonality catastrophe and X-ray spectrum
  • 5.2. Hartree-Fock approximation
  • 5.3. Landau Fermi liquid theory
  • 5.4. Perturbation theory and the validity of Fermi liquid theory
  • 5.5. Symmetry-breaking phase and the spin-density-wave state
  • 5.6. Nonlinear [sigma]-model
  • 6. Quantum gauge theories
  • 6.1. Simple gauge theories
  • 6.2. Z[subscript 2] lattice gauge theory
  • 6.3. U(1) gauge theory and the XY-model in 1 + 2 dimensions
  • 6.4. The quantum U(1) gauge theory on a lattice
  • 7. Theory of quantum Hall states
  • 7.1. The Aharonov-Bohm effect and fractional statistics
  • 7.2. The quantum Hall effect
  • 7.3. Effective theory of fractional quantum Hall liquids
  • 7.4. Edge excitations in fractional quantum Hall liquids
  • 8. Topological and quantum order
  • 8.1. States of matter and the concept of order
  • 8.2. Topological order in fractional quantum Hall states
  • 8.3. Quantum orders
  • 8.4. A new classification of orders
  • 9. Mean-field theory of spin liquids and quantum order
  • 9.1. Projective construction of quantum spin-liquid states
  • 9.2. The SU(2) projective construction
  • 9.3. Topological orders in gapped spin-liquid states
  • 9.4. Quantum orders in symmetric spin liquids
  • 9.5. Continuous phase transitions without symmetry breaking
  • 9.6. The zoo of symmetric spin liquids
  • 9.7. Physical measurements of quantum orders
  • 9.8. The phase diagram of the J[subscript 1]-J[subscript 2] model in the large-N limit
  • 9.9. Quantum order and the stability of mean-field spin liquids
  • 9.10. Quantum order and gapless gauge bosons and fermions
  • 10. String condensation-an unification of light and fermions
  • 10.1. Local bosonic models
  • 10.2. An exactly soluble model from a projective construction
  • 10.3. Z[subscript 2] spin liquids and string-net condensation
  • 10.4. Classification of string-net condensations
  • 10.5. Emergent fermions and string-net condensation
  • 10.6. The quantum rotor model and U(1) lattice gauge theory
  • 10.7. Emergent light and electrons from an SU(N[subscript f]) spin model
  • Index