Nanostructured thin films and surfaces /
Saved in:
Imprint: | Weinheim : Wiley-VCH, c2010. |
---|---|
Description: | xix, 431 p. : ill. (some col.) ; 25 cm. |
Language: | English |
Series: | Nanomaterials for the life sciences ; v. 5 Nanomaterials for the life sciences ; v. 5. |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/7996041 |
Table of Contents:
- Preface
- List of Contributors
- 1. Polymer Thin Films for Biomedical Applications
- 1.1. Introduction
- 1.2. Biocompatible Coatings
- 1.2.1. Protein-Repellant Coatings
- 1.2.1.1. Pegylated Thin Films
- 1.2.1.2. Non-Pegylated Hydrophilic Thin Films
- 1.2.1.3. Thin Films of Hyperbranched Polymers
- 1.2.1.4. Multilayer Thin Films
- 1.2.2. Antithrombogenic Coatings
- 1.2.2.1. Surface Chemistry and Blood Compatibility
- 1.2.2.2. Membrane-Mimetic Thin Films
- 1.2.2.3. Heparin-Mimetic Thin Films
- 1.2.2.4. Clot-Lyzing Thin Films
- 1.2.2.5. Polyelectrolyte Multilayer Thin Films
- 1.2.2.6. Polyurethane Coatings
- 1.2.2.7. Vapor-Deposited Thin Films
- 1.2.3. Antimicrobial Coatings
- 1.2.3.1. Cationic Polymers
- 1.2.3.2. Nanocomposite Polymer Thin Films Incorporating Inorganic Biocides
- 1.2.3.3. Antibiotic-Conjugated Polymer Thin Films
- 1.2.3.4. Biomimetic Antibacterial Coatings
- 1.2.3.5. Thin Films Resistant to the Adhesion of Viable Bacteria"
- 1.3. Coatings for Tissue Engineering Substrates
- 1.3.1. Pegylated Thin Films
- 1.3.2. Zwitterionic Thin Films
- 1.3.3. Thin Films of Hyperbranched Polymers
- 1.3.4. Polyurethane Coatings
- 1.3.5. Polysaccharide-Based Thin Films
- 1.3.6. Polyelectrolyte Multilayer Thin Films
- 1.3.7. Temperature-Responsive Polymer Coatings
- 1.3.8. Electroactive Thin Films
- 1.3.9. Other Functional Polymer Coatings
- 1.3.10. Multilayer Thin Films for Cell Encapsulation
- 1.3.11. Patterned Thin Films
- 1.4. Polymer Thin Films for Drug Delivery
- 1.5. Polymer Thin Films for Gene Delivery
- 1.6. Conclusions
- References
- 2. Biofunctionalization of Polymeric Thin Films and Surfaces
- 2.1. Introduction: The Case of Biofunctionalized Surfaces and Interfaces
- 2.2. Polymer-Based Biointerfaces
- 2.2.1. Requirements for Biofunctionalized Polymer Surfaces
- 2.2.2. Surface Modification Using Functional Polymers and Polymer-Based Approaches
- 2.2.2.1. Grafting of Polymers to Surfaces
- 2.2.2.2. Polymer Brushes by Surface-Initiated Polymerization
- 2.2.2.3. Physisorbed Multifunctional Polymers
- 2.2.2.4. Multipotent Covalent Coatings
- 2.2.2.5. Plasma Polymerization and Chemical Vapor Deposition (CVD) Approaches
- 2.2.3. Surface Modification of Polymer Surfaces, and Selected Examples
- 2.2.3.1. Coupling and Bioconjugation Strategies
- 2.2.3.2. Interaction with Cells
- 2.2.3.3. Patterned Polymeric Thin Films in Biosensor Applications
- 2.3. Summary and Future Perspectives
- References
- 3. Stimuli-Responsive Polymer Nanocoatings
- 3.1. Introduction
- 3.2. Stimuli-Responsive Polymers
- 3.2.1. Polymers Responsive to Temperature
- 3.2.2. Polymers Responsive to pH
- 3.2.3. Dual Responsive/Multiresponsive Polymers
- 3.2.4. Intelligent Bioconjugates
- 3.2.5. Responsive Biopolymers
- 3.3. Polymer Films and Interfacial Analysis
- 3.4. Applications
- 3.4.1. Release Matrices
- 3.4.2. Cell Sheet Engineering
- 3.4.3. Biofilm Control
- 3.4.4. Cell Sorting
- 3.4.5. Stimuli-Modulated Membranes
- 3.4.6. Chromatography
- 3.4.7. Microfluidics and Laboratory-on-a-Chip
- 3.5. Summary and Future Perspectives
- Acknowledgments
- References
- 4. Ceramic Nanocoatings and Their Applications in the Life Sciences
- 4.1. Introduction
- 4.2. Magnetron Sputtering
- 4.3. Physical and Chemical Properties of SiHA Coatings
- 4.4. Biological Properties of SiHA Coatings
- 4.4.1. In Vitro Acellular Testing
- 4.4.2. In Vitro Cellular Testing
- 4.5. Future Perspectives
- 4.6. Conclusions
- References
- 5. Gold Nanofilrns: Synthesis, Characterization, and Potential Biomedical Applications
- 5.1. Introduction
- 5.2. Preparation of Various AuNPs
- 5.3. Functionalization of AuNPs and their Applications through Aggregation
- 5.4. AuNP Assemblies and Arrays
- 5.4.1. AuNP Assemblies Structured on Substrates
- 5.4.2. AuNP Assembly on Biotemplates
- 5.4.3. AuNP Arrays for Gas Sensing
- 5.4.4. AuNP Arrays for Biosensing
- 5.5. Conclusions
- References
- 6. Thin Films on Titania, and Their Applications in the Life Sciences
- 6.1. Introduction
- 6.2. Titanium in Contact with a Biomaterial
- 6.3. Lipid Bilayers at the Titania Surface
- 6.3.1. Formation of Lipid Bilayers on the Titania Surface
- 6.3.1.1. Spreading of Vesicles on a TiO 2 Surface: Comparison to a SiO 2 Surface
- 6.3.2. Interactions: lipid Molecule-Titania Surface
- 6.3.3. Structure and Conformation of lipid Molecules in the Bilayer on the Titania Surface
- 6.3.3.1. Structure of Phosphatidylcholine on the Titania Surface
- 6.4. Characteristics of Extracellular Matrix Proteins on the Titania Surface
- 6.4.1. Collagen Adsorption on Titania Surfaces
- 6.4.1.1. Morphology of Collagen Adsorbed on an Oxidized Titanium Surface
- 6.4.1.2. Adsorption of Collagen on a Hydroxylated Titania Surface
- 6.4.1.3. Morphology and Structure of Collagen Adsorbed on a Calcified Titania Surface
- 6.4.1.4. Conclusions
- 6.4.1.5. Structure of Collagen on the Titania Surface: Theoretical Predictions
- 6.4.2. Fibronectin Adsorption on the Titania Surface
- 6.4.2.1. Morphology of Fibronectin Adsorbed on the Titania Surface
- 6.4.2.2. Fibronectin-Titania Interactions
- 6.4.2.3. Structure of Fibronectin Adsorbed onto the Titania Surface
- 6.4.2.4. Atomic-Scale Picture of Fibronectin Adsorbed on the Titania Surface: Theoretical Predictions
- 6.4.2.5. Conclusions
- 6.5. Conclusions
- Acknowledgments
- References
- 7. Preparation, Characterization, and Potential Biomedical Applications of Nanostructured Zirconia Coatings and Films
- 7.1. Introduction
- 7.2. Preparation and Characterization of Nano-ZrO 2 Films
- 7.2.1. Cathodic Arc Plasma Deposition
- 7.2.2. Plasma Spraying
- 7.2.3. Sol-Gel Methods
- 7.2.4. Electrochemical Deposition
- 7.2.5. Anodic Oxidation and Micro-Arc Oxidation
- 7.2.6. Magnetron Sputtering
- 7.3. Bioactivity of Nano-ZrO 2 Coatings and Films
- 7.4. Cell Behavior on Nano-ZrO 2 Coatings and Films
- 7.5. Applications of Nano-ZrO 2 Films to Biosensors
- References
- 8. Free-Standing Nanostructured Thin Films
- 8.1. Introduction
- 8.2. The Roles of Free-Standing Thin Films
- 8.2.1. Films as Partitions
- 8.2.2. Nanoseparation Membranes
- 8.2.3. Biomembranes
- 8.3. Free-Standing Thin Films with Bilayer Structures
- 8.3.1. Supported Lipid Bilayers and "Black Lipid Membranes"
- 8.3.2. Foam Films and Newton Black Films
- 8.3.3. Dried Foam Film
- 8-3.4. Foam Films of Ionic Liquids
- 8.4. Free-Standing Thin Films Prepared with Solid Surfaces
- 8.5. Free-Standing Thin Films of Nanoparticles
- 8.6. Nanofibrous Free-Standing Thin Films
- 8.6.1. Electrospinning and Filtration Methods
- 8.6.2. Metal Hydroxide Nanostrands
- 8:6.3. Nanofibrous Composite Films
- 8.6.4. Nanoseparation Membranes
- 8.7. Conclusions
- References
- 9. Dip-Pen Nanolithography of Nanostructured Thin Films for the Life Sciences
- 9.1. Introduction
- 9.2. Dip-Pen Nanolithography
- 9.2.1. Important Parameters
- 9.2.2. Applications of DPN
- 9.3. Direct and Indirect Patterning of Biomaterials Using DPN
- 9.3.1. Background
- 9.3.2. Direct Patterning
- 9.3.3. Indirect Patterning
- 9.4. Applications of DPN for Medical Diagnostics and Drug Development
- 9.4.1. General Methods of Nano/Micro Bioarray Patterning
- 9.4.2. Virus Array Generation and Detection Tests
- 9.4.3. Diagnosis of Allergic Disease
- 9.4.4. Cancer Detection Using Nano/Micro Protein Arrays
- 9.4.5. Drug Development
- 9.4.6. Lab-on-a-Chip Using Microarrays
- 9.5. Summary and Future Directions
- References
- 10. Understanding and Controlling Wetting Phenomena at the Micro-and Nanoscales
- 10.1. Introduction
- 10.2. Wetting and Contact Angle
- 10.3. Design and Creation of Superhydrophobic Surfaces
- 10.3.1. Design Parameters for a Robust Composite Interface
- 10.3.2. Creation of Superhydrophobic Surfaces
- 10.3.3. Superhydrophobic Surfaces with Unitary Roughness
- 10.3.4. Superhydrophobic Surfaces with Two-Scale Roughness
- 10.3.5. Superhydrophobic Surfaces with Reentrant Structure
- 10.4. Impact Dynamics of Water on Superhydrophobic Surfaces
- 10.4.1. Impact Dynamics on Nanostructured MWNT Surfaces
- 10.4.2. Impact Dynamics on Micropattemed Surfaces
- 10.5. Electrically Controlled Wettability Switching on Superhydrophobic Surfaces
- 10.5.1. Reversible Control of Wettability Using Electrostatic Methods
- 10.5.2. Electrowetting on Superhydrophobic Surfaces
- 10.5.3. Novel Strategies for Reversible Electrowetting on Rough Surfaces
- 10.6. Electrochemically Controlled Wetting of Superhydrophobic Surfaces
- 10.6.1. Polarity-Dependent Wetting of Nanotube Membranes
- 10.6.2. Mechanism of Polarity-Dependent Wetting and Transport
- 10.6.3. Potential Applications of Electrochemically Controlled Wetting and Transport
- 10.7. Summary and Future Perspectives
- 10.7.1. Future Perspectives
- Acknowledgments
- References
- 11. Imaging of Thin Films, and Its Application in the Life Sciences
- 11.1. Introduction
- 11.2. Thin Film Preparation Methods
- 11.2.1. Dip-Coating
- 11.2.2. Spin-Coating
- 11.2.2. Langmuir-Blodgett (LB) Films
- 11.2.4. Self-Assembled Monolayers
- 11.2.5. Layer-by-Layer Assembly
- 11.2.6. Polymer Brushes: The "Grafting-From" Approach
- 11.3. Structuring: The Micro- and Nanostructuring of Thin Films
- 11.3.1. Photolithography
- 11.3.2. Ion Lithography and FIB Lithography
- 11.3.3. Electron lithography
- 11.3.4. Micro-Contact Printing and Nanoimprinting (NIL)
- 11.3.5. Near-Field Scanning Methods
- 11.3.6. Other Methods
- 11.4. Imaging Technologies
- 11.4.1. The Concept of Total Internal Reflection
- 11.4.2. The Concept of Waveguiding
- 11.4.3. Brewster Angle Microscopy (BAM)
- 11.4.4. Resonant Evanescent Methods
- 11.4.4.1. Surface Plasmon Resonance Microscopy
- 11.4.4.2. Waveguide Resonance Microscopy
- 11.4.4.3. Surface Plasmon Enhanced Fluorescence Microscopy
- 11.4.4.4. Waveguide Resonance Microscopy with Electro-Optical Response
- 11.4.5. Nonresonant Evanescent Methods
- 11.4.5.1. Total Internal Reflection Fluorescence (TIRF) Microscopy
- 11.4.5.2. Waveguide Scattering Microscopy
- 11.4.5.3. Waveguide Evanescent Field Fluorescence Microscopy (WEFFM)
- 11.4.5.4. Confocal Raman Microscopy and One- and Two-Photon Fluorescence Confocal Microscopy
- 11.5. Application of Thin Films in the Life Sciences
- 11.5.1. Sensors
- 11.5.2. Surface Functionalization for Biocompatibility
- 11.5.3. Drug Delivery
- 11.5.4. Bioreactors
- 11.5.5. Cell-Surface Mimicking
- 11.6. Summary
- References
- 12. Structural Characterization Techniques of Molecular Aggregates, Polymer, and Nanoparticle Films
- 12.1. Introduction
- 12.2. Characterization of Ultrathin Films of Soft Materials
- 12.2.1. X-Ray Diffraction Analysis
- 12.2.2. Infrared Transmission and Reflection Spectroscopy
- 12.2.3. Multiple-Angle Incidence Resolution Spectrometry (MAIRS)
- 12.2.3.1. Theoretical Background of MAIRS
- 12.2.3.2. Molecular Orientation Analysis in Polymer Thin Films by IR-MAIRS
- 12.2.3.3. Analysis of Metal Thin Films
- References
- Index