Nanostructured thin films and surfaces /

Saved in:
Bibliographic Details
Imprint:Weinheim : Wiley-VCH, c2010.
Description:xix, 431 p. : ill. (some col.) ; 25 cm.
Language:English
Series:Nanomaterials for the life sciences ; v. 5
Nanomaterials for the life sciences ; v. 5.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7996041
Hidden Bibliographic Details
Other authors / contributors:Kumar, C. S. S. R. (Challa S. S. R.)
ISBN:9783527321551 (alk. paper)
3527321551 (alk. paper)
Notes:Includes bibliographical references and index.
Table of Contents:
  • Preface
  • List of Contributors
  • 1. Polymer Thin Films for Biomedical Applications
  • 1.1. Introduction
  • 1.2. Biocompatible Coatings
  • 1.2.1. Protein-Repellant Coatings
  • 1.2.1.1. Pegylated Thin Films
  • 1.2.1.2. Non-Pegylated Hydrophilic Thin Films
  • 1.2.1.3. Thin Films of Hyperbranched Polymers
  • 1.2.1.4. Multilayer Thin Films
  • 1.2.2. Antithrombogenic Coatings
  • 1.2.2.1. Surface Chemistry and Blood Compatibility
  • 1.2.2.2. Membrane-Mimetic Thin Films
  • 1.2.2.3. Heparin-Mimetic Thin Films
  • 1.2.2.4. Clot-Lyzing Thin Films
  • 1.2.2.5. Polyelectrolyte Multilayer Thin Films
  • 1.2.2.6. Polyurethane Coatings
  • 1.2.2.7. Vapor-Deposited Thin Films
  • 1.2.3. Antimicrobial Coatings
  • 1.2.3.1. Cationic Polymers
  • 1.2.3.2. Nanocomposite Polymer Thin Films Incorporating Inorganic Biocides
  • 1.2.3.3. Antibiotic-Conjugated Polymer Thin Films
  • 1.2.3.4. Biomimetic Antibacterial Coatings
  • 1.2.3.5. Thin Films Resistant to the Adhesion of Viable Bacteria"
  • 1.3. Coatings for Tissue Engineering Substrates
  • 1.3.1. Pegylated Thin Films
  • 1.3.2. Zwitterionic Thin Films
  • 1.3.3. Thin Films of Hyperbranched Polymers
  • 1.3.4. Polyurethane Coatings
  • 1.3.5. Polysaccharide-Based Thin Films
  • 1.3.6. Polyelectrolyte Multilayer Thin Films
  • 1.3.7. Temperature-Responsive Polymer Coatings
  • 1.3.8. Electroactive Thin Films
  • 1.3.9. Other Functional Polymer Coatings
  • 1.3.10. Multilayer Thin Films for Cell Encapsulation
  • 1.3.11. Patterned Thin Films
  • 1.4. Polymer Thin Films for Drug Delivery
  • 1.5. Polymer Thin Films for Gene Delivery
  • 1.6. Conclusions
  • References
  • 2. Biofunctionalization of Polymeric Thin Films and Surfaces
  • 2.1. Introduction: The Case of Biofunctionalized Surfaces and Interfaces
  • 2.2. Polymer-Based Biointerfaces
  • 2.2.1. Requirements for Biofunctionalized Polymer Surfaces
  • 2.2.2. Surface Modification Using Functional Polymers and Polymer-Based Approaches
  • 2.2.2.1. Grafting of Polymers to Surfaces
  • 2.2.2.2. Polymer Brushes by Surface-Initiated Polymerization
  • 2.2.2.3. Physisorbed Multifunctional Polymers
  • 2.2.2.4. Multipotent Covalent Coatings
  • 2.2.2.5. Plasma Polymerization and Chemical Vapor Deposition (CVD) Approaches
  • 2.2.3. Surface Modification of Polymer Surfaces, and Selected Examples
  • 2.2.3.1. Coupling and Bioconjugation Strategies
  • 2.2.3.2. Interaction with Cells
  • 2.2.3.3. Patterned Polymeric Thin Films in Biosensor Applications
  • 2.3. Summary and Future Perspectives
  • References
  • 3. Stimuli-Responsive Polymer Nanocoatings
  • 3.1. Introduction
  • 3.2. Stimuli-Responsive Polymers
  • 3.2.1. Polymers Responsive to Temperature
  • 3.2.2. Polymers Responsive to pH
  • 3.2.3. Dual Responsive/Multiresponsive Polymers
  • 3.2.4. Intelligent Bioconjugates
  • 3.2.5. Responsive Biopolymers
  • 3.3. Polymer Films and Interfacial Analysis
  • 3.4. Applications
  • 3.4.1. Release Matrices
  • 3.4.2. Cell Sheet Engineering
  • 3.4.3. Biofilm Control
  • 3.4.4. Cell Sorting
  • 3.4.5. Stimuli-Modulated Membranes
  • 3.4.6. Chromatography
  • 3.4.7. Microfluidics and Laboratory-on-a-Chip
  • 3.5. Summary and Future Perspectives
  • Acknowledgments
  • References
  • 4. Ceramic Nanocoatings and Their Applications in the Life Sciences
  • 4.1. Introduction
  • 4.2. Magnetron Sputtering
  • 4.3. Physical and Chemical Properties of SiHA Coatings
  • 4.4. Biological Properties of SiHA Coatings
  • 4.4.1. In Vitro Acellular Testing
  • 4.4.2. In Vitro Cellular Testing
  • 4.5. Future Perspectives
  • 4.6. Conclusions
  • References
  • 5. Gold Nanofilrns: Synthesis, Characterization, and Potential Biomedical Applications
  • 5.1. Introduction
  • 5.2. Preparation of Various AuNPs
  • 5.3. Functionalization of AuNPs and their Applications through Aggregation
  • 5.4. AuNP Assemblies and Arrays
  • 5.4.1. AuNP Assemblies Structured on Substrates
  • 5.4.2. AuNP Assembly on Biotemplates
  • 5.4.3. AuNP Arrays for Gas Sensing
  • 5.4.4. AuNP Arrays for Biosensing
  • 5.5. Conclusions
  • References
  • 6. Thin Films on Titania, and Their Applications in the Life Sciences
  • 6.1. Introduction
  • 6.2. Titanium in Contact with a Biomaterial
  • 6.3. Lipid Bilayers at the Titania Surface
  • 6.3.1. Formation of Lipid Bilayers on the Titania Surface
  • 6.3.1.1. Spreading of Vesicles on a TiO 2 Surface: Comparison to a SiO 2 Surface
  • 6.3.2. Interactions: lipid Molecule-Titania Surface
  • 6.3.3. Structure and Conformation of lipid Molecules in the Bilayer on the Titania Surface
  • 6.3.3.1. Structure of Phosphatidylcholine on the Titania Surface
  • 6.4. Characteristics of Extracellular Matrix Proteins on the Titania Surface
  • 6.4.1. Collagen Adsorption on Titania Surfaces
  • 6.4.1.1. Morphology of Collagen Adsorbed on an Oxidized Titanium Surface
  • 6.4.1.2. Adsorption of Collagen on a Hydroxylated Titania Surface
  • 6.4.1.3. Morphology and Structure of Collagen Adsorbed on a Calcified Titania Surface
  • 6.4.1.4. Conclusions
  • 6.4.1.5. Structure of Collagen on the Titania Surface: Theoretical Predictions
  • 6.4.2. Fibronectin Adsorption on the Titania Surface
  • 6.4.2.1. Morphology of Fibronectin Adsorbed on the Titania Surface
  • 6.4.2.2. Fibronectin-Titania Interactions
  • 6.4.2.3. Structure of Fibronectin Adsorbed onto the Titania Surface
  • 6.4.2.4. Atomic-Scale Picture of Fibronectin Adsorbed on the Titania Surface: Theoretical Predictions
  • 6.4.2.5. Conclusions
  • 6.5. Conclusions
  • Acknowledgments
  • References
  • 7. Preparation, Characterization, and Potential Biomedical Applications of Nanostructured Zirconia Coatings and Films
  • 7.1. Introduction
  • 7.2. Preparation and Characterization of Nano-ZrO 2 Films
  • 7.2.1. Cathodic Arc Plasma Deposition
  • 7.2.2. Plasma Spraying
  • 7.2.3. Sol-Gel Methods
  • 7.2.4. Electrochemical Deposition
  • 7.2.5. Anodic Oxidation and Micro-Arc Oxidation
  • 7.2.6. Magnetron Sputtering
  • 7.3. Bioactivity of Nano-ZrO 2 Coatings and Films
  • 7.4. Cell Behavior on Nano-ZrO 2 Coatings and Films
  • 7.5. Applications of Nano-ZrO 2 Films to Biosensors
  • References
  • 8. Free-Standing Nanostructured Thin Films
  • 8.1. Introduction
  • 8.2. The Roles of Free-Standing Thin Films
  • 8.2.1. Films as Partitions
  • 8.2.2. Nanoseparation Membranes
  • 8.2.3. Biomembranes
  • 8.3. Free-Standing Thin Films with Bilayer Structures
  • 8.3.1. Supported Lipid Bilayers and "Black Lipid Membranes"
  • 8.3.2. Foam Films and Newton Black Films
  • 8.3.3. Dried Foam Film
  • 8-3.4. Foam Films of Ionic Liquids
  • 8.4. Free-Standing Thin Films Prepared with Solid Surfaces
  • 8.5. Free-Standing Thin Films of Nanoparticles
  • 8.6. Nanofibrous Free-Standing Thin Films
  • 8.6.1. Electrospinning and Filtration Methods
  • 8.6.2. Metal Hydroxide Nanostrands
  • 8:6.3. Nanofibrous Composite Films
  • 8.6.4. Nanoseparation Membranes
  • 8.7. Conclusions
  • References
  • 9. Dip-Pen Nanolithography of Nanostructured Thin Films for the Life Sciences
  • 9.1. Introduction
  • 9.2. Dip-Pen Nanolithography
  • 9.2.1. Important Parameters
  • 9.2.2. Applications of DPN
  • 9.3. Direct and Indirect Patterning of Biomaterials Using DPN
  • 9.3.1. Background
  • 9.3.2. Direct Patterning
  • 9.3.3. Indirect Patterning
  • 9.4. Applications of DPN for Medical Diagnostics and Drug Development
  • 9.4.1. General Methods of Nano/Micro Bioarray Patterning
  • 9.4.2. Virus Array Generation and Detection Tests
  • 9.4.3. Diagnosis of Allergic Disease
  • 9.4.4. Cancer Detection Using Nano/Micro Protein Arrays
  • 9.4.5. Drug Development
  • 9.4.6. Lab-on-a-Chip Using Microarrays
  • 9.5. Summary and Future Directions
  • References
  • 10. Understanding and Controlling Wetting Phenomena at the Micro-and Nanoscales
  • 10.1. Introduction
  • 10.2. Wetting and Contact Angle
  • 10.3. Design and Creation of Superhydrophobic Surfaces
  • 10.3.1. Design Parameters for a Robust Composite Interface
  • 10.3.2. Creation of Superhydrophobic Surfaces
  • 10.3.3. Superhydrophobic Surfaces with Unitary Roughness
  • 10.3.4. Superhydrophobic Surfaces with Two-Scale Roughness
  • 10.3.5. Superhydrophobic Surfaces with Reentrant Structure
  • 10.4. Impact Dynamics of Water on Superhydrophobic Surfaces
  • 10.4.1. Impact Dynamics on Nanostructured MWNT Surfaces
  • 10.4.2. Impact Dynamics on Micropattemed Surfaces
  • 10.5. Electrically Controlled Wettability Switching on Superhydrophobic Surfaces
  • 10.5.1. Reversible Control of Wettability Using Electrostatic Methods
  • 10.5.2. Electrowetting on Superhydrophobic Surfaces
  • 10.5.3. Novel Strategies for Reversible Electrowetting on Rough Surfaces
  • 10.6. Electrochemically Controlled Wetting of Superhydrophobic Surfaces
  • 10.6.1. Polarity-Dependent Wetting of Nanotube Membranes
  • 10.6.2. Mechanism of Polarity-Dependent Wetting and Transport
  • 10.6.3. Potential Applications of Electrochemically Controlled Wetting and Transport
  • 10.7. Summary and Future Perspectives
  • 10.7.1. Future Perspectives
  • Acknowledgments
  • References
  • 11. Imaging of Thin Films, and Its Application in the Life Sciences
  • 11.1. Introduction
  • 11.2. Thin Film Preparation Methods
  • 11.2.1. Dip-Coating
  • 11.2.2. Spin-Coating
  • 11.2.2. Langmuir-Blodgett (LB) Films
  • 11.2.4. Self-Assembled Monolayers
  • 11.2.5. Layer-by-Layer Assembly
  • 11.2.6. Polymer Brushes: The "Grafting-From" Approach
  • 11.3. Structuring: The Micro- and Nanostructuring of Thin Films
  • 11.3.1. Photolithography
  • 11.3.2. Ion Lithography and FIB Lithography
  • 11.3.3. Electron lithography
  • 11.3.4. Micro-Contact Printing and Nanoimprinting (NIL)
  • 11.3.5. Near-Field Scanning Methods
  • 11.3.6. Other Methods
  • 11.4. Imaging Technologies
  • 11.4.1. The Concept of Total Internal Reflection
  • 11.4.2. The Concept of Waveguiding
  • 11.4.3. Brewster Angle Microscopy (BAM)
  • 11.4.4. Resonant Evanescent Methods
  • 11.4.4.1. Surface Plasmon Resonance Microscopy
  • 11.4.4.2. Waveguide Resonance Microscopy
  • 11.4.4.3. Surface Plasmon Enhanced Fluorescence Microscopy
  • 11.4.4.4. Waveguide Resonance Microscopy with Electro-Optical Response
  • 11.4.5. Nonresonant Evanescent Methods
  • 11.4.5.1. Total Internal Reflection Fluorescence (TIRF) Microscopy
  • 11.4.5.2. Waveguide Scattering Microscopy
  • 11.4.5.3. Waveguide Evanescent Field Fluorescence Microscopy (WEFFM)
  • 11.4.5.4. Confocal Raman Microscopy and One- and Two-Photon Fluorescence Confocal Microscopy
  • 11.5. Application of Thin Films in the Life Sciences
  • 11.5.1. Sensors
  • 11.5.2. Surface Functionalization for Biocompatibility
  • 11.5.3. Drug Delivery
  • 11.5.4. Bioreactors
  • 11.5.5. Cell-Surface Mimicking
  • 11.6. Summary
  • References
  • 12. Structural Characterization Techniques of Molecular Aggregates, Polymer, and Nanoparticle Films
  • 12.1. Introduction
  • 12.2. Characterization of Ultrathin Films of Soft Materials
  • 12.2.1. X-Ray Diffraction Analysis
  • 12.2.2. Infrared Transmission and Reflection Spectroscopy
  • 12.2.3. Multiple-Angle Incidence Resolution Spectrometry (MAIRS)
  • 12.2.3.1. Theoretical Background of MAIRS
  • 12.2.3.2. Molecular Orientation Analysis in Polymer Thin Films by IR-MAIRS
  • 12.2.3.3. Analysis of Metal Thin Films
  • References
  • Index