On a conjecture of E.M. Stein on the Hilbert transform on vector fields /

Saved in:
Bibliographic Details
Author / Creator:Lacey, Michael T. (Michael Thoreau)
Imprint:Providence, R.I. : American Mathematical Society, 2010.
Description:viii, 72 p. : ill. ; 26 cm.
Language:English
Series:Memoirs of the American Mathematical Society, 0065-9266 ; no. 965
Memoirs of the American Mathematical Society ; no. 965.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7998151
Hidden Bibliographic Details
Other authors / contributors:Li, Xiaochun, 1963-
ISBN:9780821845400 (alk. paper)
0821845403 (alk. paper)
Notes:"Volume 205, number 965 (fourth of 5 numbers)."
Includes bibliographical references (p. 71-72).
Description
Summary:Let $v$ be a smooth vector field on the plane, that is a map from the plane to the unit circle. The authors study sufficient conditions for the boundedness of the Hilbert transform $\textrm{{H}}_{{v, \epsilon }}f(x) := \text{{p.v.}}\int_{{-\epsilon}}^{{\epsilon}} f(x-yv(x))\;\frac{{dy}}y$ where $\epsilon$ is a suitably chosen parameter, determined by the smoothness properties of the vector field. Table of Contents: Overview of principal results; Besicovitch set and Carleson's theorem; The Lipschitz Kakeya maximal function; The $L^2$ estimate; Almost orthogonality between annuli. (MEMO/205/965)
Item Description:"Volume 205, number 965 (fourth of 5 numbers)."
Physical Description:viii, 72 p. : ill. ; 26 cm.
Bibliography:Includes bibliographical references (p. 71-72).
ISBN:9780821845400
0821845403
ISSN:0065-9266
;