Bifurcations in piecewise-smooth continuous systems /

Saved in:
Bibliographic Details
Author / Creator:Simpson, David John Warwick.
Imprint:Singapore ; Hackensack, NJ : World Scientific, 2010.
Description:xv, 238 p. : ill. (some col.) ; 24 cm.
Language:English
Series:World Scientific series on nonlinear science. Series A, Monographs and treatises ; v. 70
World Scientific series on nonlinear science. Series A, Monographs and treatises ; v. 70.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8056368
Hidden Bibliographic Details
ISBN:9814293849
9789814293846
Notes:Originally presented as: Thesis (Ph.D.)--University of Colorado at Boulder, 2008.
Includes bibliographical references and index.
Summary:Real-world systems that involve some non-smooth change are often well-modeled by piecewise-smooth systems. However there still remain many gaps in the mathematical theory of such systems. This doctoral thesis presents new results regarding bifurcations of piecewise-smooth, continuous, autonomous systems of ordinary differential equations and maps. Various codimension-two, discontinuity induced bifurcations are unfolded in a rigorous manner. Several of these unfoldings are applied to a mathematical model of the growth of Saccharomyces cerevisiae (a common yeast). The nature of resonance near border-collision bifurcations is described; in particular, the curious geometry of resonance tongues in piecewise-smooth continuous maps is explained in detail. Neimark-Sacker-like border-collision bifurcations are both numerically and theoretically investigated. A comprehensive background section is conveniently provided for those with little or no experience in piecewise-smooth systems.

MARC

LEADER 00000cam a2200000Ia 4500
001 8056368
005 20130322125100.0
008 100107s2010 si a b 001 0 eng d
003 ICU
020 |a 9814293849 
020 |a 9789814293846 
035 |a (OCoLC)496957923 
035 |a om2886673 
040 |a BTCTA  |b eng  |c BTCTA  |d YDXCP  |d FQG  |d BWX  |d TXA  |d SINLB  |d ZWZ 
049 |a CGUA 
082 0 4 |a 515.35  |2 22 
090 |a QA380  |b .S55 2010 
100 1 |a Simpson, David John Warwick.  |0 http://id.loc.gov/authorities/names/no2010112973  |1 http://viaf.org/viaf/128253786 
245 1 0 |a Bifurcations in piecewise-smooth continuous systems /  |c David John Warwick Simpson. 
260 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific,  |c 2010. 
300 |a xv, 238 p. :  |b ill. (some col.) ;  |c 24 cm. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a unmediated  |b n  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/n 
338 |a volume  |b nc  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/nc 
490 1 |a World Scientific series on nonlinear science. Series A, Monographs and treatises ;  |v v. 70 
500 |a Originally presented as: Thesis (Ph.D.)--University of Colorado at Boulder, 2008. 
504 |a Includes bibliographical references and index. 
520 |a Real-world systems that involve some non-smooth change are often well-modeled by piecewise-smooth systems. However there still remain many gaps in the mathematical theory of such systems. This doctoral thesis presents new results regarding bifurcations of piecewise-smooth, continuous, autonomous systems of ordinary differential equations and maps. Various codimension-two, discontinuity induced bifurcations are unfolded in a rigorous manner. Several of these unfoldings are applied to a mathematical model of the growth of Saccharomyces cerevisiae (a common yeast). The nature of resonance near border-collision bifurcations is described; in particular, the curious geometry of resonance tongues in piecewise-smooth continuous maps is explained in detail. Neimark-Sacker-like border-collision bifurcations are both numerically and theoretically investigated. A comprehensive background section is conveniently provided for those with little or no experience in piecewise-smooth systems. 
650 0 |a Bifurcation theory.  |0 http://id.loc.gov/authorities/subjects/sh85013940 
650 0 |a Differential equations.  |0 http://id.loc.gov/authorities/subjects/sh85037890 
650 0 |a Saccharomyces cerevisiae.  |0 http://id.loc.gov/authorities/subjects/sh87002577 
650 7 |a Bifurcation, Théorie de la.  |2 ram 
650 7 |a Équations différentielles.  |2 ram 
650 7 |a Bifurcation theory.  |2 fast  |0 http://id.worldcat.org/fast/fst00831564 
650 7 |a Differential equations.  |2 fast  |0 http://id.worldcat.org/fast/fst00893446 
650 7 |a Saccharomyces cerevisiae.  |2 fast  |0 http://id.worldcat.org/fast/fst01103039 
830 0 |a World Scientific series on nonlinear science.  |n Series A,  |p Monographs and treatises ;  |v v. 70. 
903 |a HeVa 
929 |a cat 
999 f f |i da89ce30-29fa-55f5-a2f4-af11bda19883  |s 3419a09f-e897-5b81-8618-052c689cad77 
928 |t Library of Congress classification  |a QA380 .S55 2010  |l Eck  |c Eck-Eck  |i 1258748 
927 |t Library of Congress classification  |a QA380 .S55 2010  |l Eck  |c Eck-Eck  |e ABST  |b 089541570  |i 8772268