Methodology of longitudinal surveys /
Saved in:
Imprint: | Hoboken, N.J. : Wiley ; Chichester : John Wiley [distributor], 2008. |
---|---|
Description: | 1 online resource. |
Language: | English |
Series: | Wiley series in survey methodology Wiley series in survey methodology. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/8062739 |
Table of Contents:
- Preface
- 1. Methods for Longitudinal Surveys
- 1.1. Introduction,
- 1.2. Types of Longitudinal Surveys,
- 1.3. Strengths of Longitudinal Surveys
- 1.4. Weaknesses of Longitudinal Surveys
- 1.5. Design Features Specific to Longitudinal Surveys
- 1.6. Quality in Longitudinal Surveys
- 1.7. Conclusions
- References
- 2. Sample Design for Longitudinal Surveys
- 2.1. Introduction
- 2.2. Types of Longitudinal Sample Design
- 2.3. Fundamental Aspects of Sample Design
- 2.4. Other Aspects of Design and Implementation
- 2.5. Conclusion
- References
- 3. Ethical Issues in Longitudinal Surveys
- 3.1. Introduction
- 3.2. History of Research Ethics
- 3.3. Informed Consent
- 3.4. Free Choice Regarding Participation
- 3.5. Avoiding Harm
- 3.6. Participant Confidentiality and Data Protection
- 3.7. Independent Ethical Overview and Participant Involvement
- Acknowledgements
- References
- 4. Enhancing Longitudinal Surveys by Linking to Administrative Data
- 4.1. Introduction
- 4.2. Administrative Data as a Research Resource
- 4.3. Record Linkage Methodology
- 4.4. Linking Survey Data with Administrative Data at Individual Level
- 4.5. Ethical and Legal Issues
- 4.6. Conclusion
- References
- 5. Tackling Seam Bias Through Questionnaire Design
- 5.1. Introduction
- 5.2. Previous Research on Seam Bias
- 5.3. SIPP and its Dependent Interviewing Procedures
- 5.4. Seam Bias Comparison - SIPP 2001 and SIPP 2004
- 5.5. Conclusions and Discussion
- References
- 6. Dependent Interviewing: A Framework and Application
- to Current Research
- 6.1. Introduction
- 6.2. Dependent Interviewing - What and Why?
- 6.3. Design Options and their Effects
- 6.4. Empirical Evidence
- 6.5. Effects of Dependent Interviewing on Data Quality Across Surveys
- 6.6. Open Issues
- References
- 7. Attitudes Over Time: The Psychology of Panel Conditioning
- 7.1. Introduction
- 7.2. Panel Conditioning
- 7.3. The Cognitive Stimulus Hypothesis
- 7.4. Data and Measures
- 7.5. Analysis
- 7.6. Discussion
- References
- 8. Some Consequences of Survey Mode Changes in Longitudinal Surveys
- 8.1. Introduction
- 8.2. Why Change Survey Modes in Longitudinal Surveys?
- 8.3. Why Changing Survey Mode Presents a Problem
- 8.4. Conclusions
- References
- 9. Using Auxiliary Data for Adjustment in Longitudinal Research
- 9.1. Introduction
- 9.2. Missing Data
- 9.3. Calibration
- 9.4. Calibrating Multiple Waves
- 9.5. Differences Between Waves
- 9.6. Single Imputation
- 9.7. Multiple Imputation
- 9.8. Conclusion and Discussion
- References
- 10. Identifying Factors Affecting Longitudinal Survey Response
- 10.1. Introduction
- 10.2. Factors Affecting Response and Attrition
- 10.3. Predicting Response in the HILDA Survey
- 10.4. Conclusion
- References
- 11. Keeping in Contact with Mobile Sample Members
- 11.1. Introduction
- 11.2. The Location Problem in Panel Surveys
- 11.3. Case Study 1: Panel Study of Income Dynamics
- 11.4. Case Study 2: Health and Retirement Study
- 11.5. Discussion
- References
- 12. The Use of Respondent Incentives on Longitudinal Surveys
- 12.1. Introduction
- 12.2. Respondent Incentives on Cross-Sectional Surveys
- 12.3. Respondent Incentives on Longitudinal Surveys
- 12.4. Current Practice on Longitudinal Surveys
- 12.5. Experimental Evidence on Longitudinal Surveys
- 12.6. Conclusion
- Acknowledgements
- References
- 13. Attrition in Consumer Panels
- 13.1. Introduction
- 13.2. The Gallup Poll Panel
- 13.3. Attrition on the Gallup Poll Panel
- 13.4. Summary
- References
- 14. Joint Treatment of Nonignorable Dropout and Informative Sampling
- for Longitudinal Survey Data
- 14.1. Introduction
- 14.2. Population Model
- 14.3. Sampling Design and Sample Distribution
- 14.4. Sample Distribution Under Informative Sampling and Informative Dropout
- 14.5. Sample Likelihood and Estimation
- 14.6. Empirical Example - British Labour Force Survey
- 14.7. Conclusions
- References
- 15. Weighting and Calibration for Household Panels
- 15.1. Introduction
- 15.2. Follow-up Rules
- 15.3. Design-Based Estimation
- 15.4. Calibration, 274
- 15.5. Nonresponse and Attrition
- 15.6. Summary
- References
- 16. Statistical Modelling for Structured Longitudinal Designs
- 16.1. Introduction
- 16.2. Methodological Framework
- 16.3. The Data
- 16.4. Modelling One Response from One Cohort
- 16.5. Modelling One Response from More Than One Cohort
- 16.6. Modelling More Than One Response from One Cohort
- 16.7. Modelling Variation Between Generations
- 16.8. Conclusion
- References
- 17. Using Longitudinal Surveys to Evaluate Interventions
- 17.1. Introduction
- 17.2. Interventions, Outcomes and Longitudinal Data
- 17.3. Youth Media Campaign Longitudinal Survey
- 17.4. National Survey of Parents and Youth
- 17.5. Gaining Early Awareness and Readiness for Undergraduate Programs (GEAR UP)
- 17.6. Concluding Remarks
- References
- 18. Robust Likelihood-Based Analysis of Longitudinal Survey Data with Missing Values
- 18.1. Introduction
- 18.2. Multiple Imputation for Repeated-Measures Data
- 18.3. Robust MAR Inference with a Single Missing Outcome
- 18.4. Extensions of PSPP to Monotone and General Patterns
- 18.5. Extensions to Inferences Other than Means
- 18.6. Example
- 18.7. Discussion
- Acknowledgements
- References
- 19. Assessing the Temporal Association of Events Using Longitudinal Complex Survey Data
- 19.1. Introduction
- 19.2. Temporal Order
- 19.3. Nonparametric Density Estimation
- 19.4. Survey Weights
- 19.5. Application: The National Population Health Survey
- 19.6. Application: The Survey of Labour and Income Dynamics
- 19.7. Discussion
- References
- 20. Using Marginal Mean Models for Data from Longitudinal Surveys with a Complex Design: Some Advances in Methods
- 20.1. Introduction
- 20.2. Survey-Weighted GEE and Odds Ratio Approach
- 20.3. Variance Estimation: One-Step EF-Bootstrap
- 20.4. Goodness-of-Fit Tests
- 20.5. Illustration Using NPHS Data
- 20.6. Summary
- References
- 21. A Latent Class Approach for Estimating Gross Flows in the Presence of Correlated Classification Errors
- 21.1. Introduction
- 21.2. Correlated Classification Errors and Latent Class Modelling
- 21.3. The Data and Preliminary Evidence from Them
- 21.4. A Model for Correlated Classification Errors in Retrospective Surveys
- 21.5. Concluding Remarks
- References
- 22. A Comparison of Graphical Models and Structural Equation Models
- for the Analysis of Longitudinal Survey Data
- 22.1. Introduction
- 22.2. Conceptual Framework
- 22.3. Graphical Chain Modelling Approach
- 22.4. Structural Equation Modelling Approach
- 22.5. Model Fitting
- 22.6. Results
- 22.7. Conclusions
- References
- Index