Methodology of longitudinal surveys /

Saved in:
Bibliographic Details
Imprint:Hoboken, N.J. : Wiley ; Chichester : John Wiley [distributor], 2008.
Description:1 online resource.
Language:English
Series:Wiley series in survey methodology
Wiley series in survey methodology.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8062739
Hidden Bibliographic Details
Other authors / contributors:Lynn, Peter, 1966-
ISBN:9780470743874
0470743875
Other form:Original 9780470018712 0470018712
Table of Contents:
  • Preface
  • 1. Methods for Longitudinal Surveys
  • 1.1. Introduction,
  • 1.2. Types of Longitudinal Surveys,
  • 1.3. Strengths of Longitudinal Surveys
  • 1.4. Weaknesses of Longitudinal Surveys
  • 1.5. Design Features Specific to Longitudinal Surveys
  • 1.6. Quality in Longitudinal Surveys
  • 1.7. Conclusions
  • References
  • 2. Sample Design for Longitudinal Surveys
  • 2.1. Introduction
  • 2.2. Types of Longitudinal Sample Design
  • 2.3. Fundamental Aspects of Sample Design
  • 2.4. Other Aspects of Design and Implementation
  • 2.5. Conclusion
  • References
  • 3. Ethical Issues in Longitudinal Surveys
  • 3.1. Introduction
  • 3.2. History of Research Ethics
  • 3.3. Informed Consent
  • 3.4. Free Choice Regarding Participation
  • 3.5. Avoiding Harm
  • 3.6. Participant Confidentiality and Data Protection
  • 3.7. Independent Ethical Overview and Participant Involvement
  • Acknowledgements
  • References
  • 4. Enhancing Longitudinal Surveys by Linking to Administrative Data
  • 4.1. Introduction
  • 4.2. Administrative Data as a Research Resource
  • 4.3. Record Linkage Methodology
  • 4.4. Linking Survey Data with Administrative Data at Individual Level
  • 4.5. Ethical and Legal Issues
  • 4.6. Conclusion
  • References
  • 5. Tackling Seam Bias Through Questionnaire Design
  • 5.1. Introduction
  • 5.2. Previous Research on Seam Bias
  • 5.3. SIPP and its Dependent Interviewing Procedures
  • 5.4. Seam Bias Comparison - SIPP 2001 and SIPP 2004
  • 5.5. Conclusions and Discussion
  • References
  • 6. Dependent Interviewing: A Framework and Application
  • to Current Research
  • 6.1. Introduction
  • 6.2. Dependent Interviewing - What and Why?
  • 6.3. Design Options and their Effects
  • 6.4. Empirical Evidence
  • 6.5. Effects of Dependent Interviewing on Data Quality Across Surveys
  • 6.6. Open Issues
  • References
  • 7. Attitudes Over Time: The Psychology of Panel Conditioning
  • 7.1. Introduction
  • 7.2. Panel Conditioning
  • 7.3. The Cognitive Stimulus Hypothesis
  • 7.4. Data and Measures
  • 7.5. Analysis
  • 7.6. Discussion
  • References
  • 8. Some Consequences of Survey Mode Changes in Longitudinal Surveys
  • 8.1. Introduction
  • 8.2. Why Change Survey Modes in Longitudinal Surveys?
  • 8.3. Why Changing Survey Mode Presents a Problem
  • 8.4. Conclusions
  • References
  • 9. Using Auxiliary Data for Adjustment in Longitudinal Research
  • 9.1. Introduction
  • 9.2. Missing Data
  • 9.3. Calibration
  • 9.4. Calibrating Multiple Waves
  • 9.5. Differences Between Waves
  • 9.6. Single Imputation
  • 9.7. Multiple Imputation
  • 9.8. Conclusion and Discussion
  • References
  • 10. Identifying Factors Affecting Longitudinal Survey Response
  • 10.1. Introduction
  • 10.2. Factors Affecting Response and Attrition
  • 10.3. Predicting Response in the HILDA Survey
  • 10.4. Conclusion
  • References
  • 11. Keeping in Contact with Mobile Sample Members
  • 11.1. Introduction
  • 11.2. The Location Problem in Panel Surveys
  • 11.3. Case Study 1: Panel Study of Income Dynamics
  • 11.4. Case Study 2: Health and Retirement Study
  • 11.5. Discussion
  • References
  • 12. The Use of Respondent Incentives on Longitudinal Surveys
  • 12.1. Introduction
  • 12.2. Respondent Incentives on Cross-Sectional Surveys
  • 12.3. Respondent Incentives on Longitudinal Surveys
  • 12.4. Current Practice on Longitudinal Surveys
  • 12.5. Experimental Evidence on Longitudinal Surveys
  • 12.6. Conclusion
  • Acknowledgements
  • References
  • 13. Attrition in Consumer Panels
  • 13.1. Introduction
  • 13.2. The Gallup Poll Panel
  • 13.3. Attrition on the Gallup Poll Panel
  • 13.4. Summary
  • References
  • 14. Joint Treatment of Nonignorable Dropout and Informative Sampling
  • for Longitudinal Survey Data
  • 14.1. Introduction
  • 14.2. Population Model
  • 14.3. Sampling Design and Sample Distribution
  • 14.4. Sample Distribution Under Informative Sampling and Informative Dropout
  • 14.5. Sample Likelihood and Estimation
  • 14.6. Empirical Example - British Labour Force Survey
  • 14.7. Conclusions
  • References
  • 15. Weighting and Calibration for Household Panels
  • 15.1. Introduction
  • 15.2. Follow-up Rules
  • 15.3. Design-Based Estimation
  • 15.4. Calibration, 274
  • 15.5. Nonresponse and Attrition
  • 15.6. Summary
  • References
  • 16. Statistical Modelling for Structured Longitudinal Designs
  • 16.1. Introduction
  • 16.2. Methodological Framework
  • 16.3. The Data
  • 16.4. Modelling One Response from One Cohort
  • 16.5. Modelling One Response from More Than One Cohort
  • 16.6. Modelling More Than One Response from One Cohort
  • 16.7. Modelling Variation Between Generations
  • 16.8. Conclusion
  • References
  • 17. Using Longitudinal Surveys to Evaluate Interventions
  • 17.1. Introduction
  • 17.2. Interventions, Outcomes and Longitudinal Data
  • 17.3. Youth Media Campaign Longitudinal Survey
  • 17.4. National Survey of Parents and Youth
  • 17.5. Gaining Early Awareness and Readiness for Undergraduate Programs (GEAR UP)
  • 17.6. Concluding Remarks
  • References
  • 18. Robust Likelihood-Based Analysis of Longitudinal Survey Data with Missing Values
  • 18.1. Introduction
  • 18.2. Multiple Imputation for Repeated-Measures Data
  • 18.3. Robust MAR Inference with a Single Missing Outcome
  • 18.4. Extensions of PSPP to Monotone and General Patterns
  • 18.5. Extensions to Inferences Other than Means
  • 18.6. Example
  • 18.7. Discussion
  • Acknowledgements
  • References
  • 19. Assessing the Temporal Association of Events Using Longitudinal Complex Survey Data
  • 19.1. Introduction
  • 19.2. Temporal Order
  • 19.3. Nonparametric Density Estimation
  • 19.4. Survey Weights
  • 19.5. Application: The National Population Health Survey
  • 19.6. Application: The Survey of Labour and Income Dynamics
  • 19.7. Discussion
  • References
  • 20. Using Marginal Mean Models for Data from Longitudinal Surveys with a Complex Design: Some Advances in Methods
  • 20.1. Introduction
  • 20.2. Survey-Weighted GEE and Odds Ratio Approach
  • 20.3. Variance Estimation: One-Step EF-Bootstrap
  • 20.4. Goodness-of-Fit Tests
  • 20.5. Illustration Using NPHS Data
  • 20.6. Summary
  • References
  • 21. A Latent Class Approach for Estimating Gross Flows in the Presence of Correlated Classification Errors
  • 21.1. Introduction
  • 21.2. Correlated Classification Errors and Latent Class Modelling
  • 21.3. The Data and Preliminary Evidence from Them
  • 21.4. A Model for Correlated Classification Errors in Retrospective Surveys
  • 21.5. Concluding Remarks
  • References
  • 22. A Comparison of Graphical Models and Structural Equation Models
  • for the Analysis of Longitudinal Survey Data
  • 22.1. Introduction
  • 22.2. Conceptual Framework
  • 22.3. Graphical Chain Modelling Approach
  • 22.4. Structural Equation Modelling Approach
  • 22.5. Model Fitting
  • 22.6. Results
  • 22.7. Conclusions
  • References
  • Index