The geometrical language of continuum mechanics /
Saved in:
Author / Creator: | Epstein, M. (Marcelo) |
---|---|
Imprint: | New York : Cambridge University Press, 2010. |
Description: | xii, 312 p. : ill. ; 26 cm. |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/8126796 |
Table of Contents:
- Preface
- Part 1. Motivation and Background
- 1. The Case for Differential Geometry
- 1.1. Classical Space-Time and Fibre Bundles
- 1.2. Configuration Manifolds and Their Tangent and Cotangent Spaces
- 1.3. The Infinite-dimensional Case
- 1.4. Elasticity
- 1.5. Material or Configurational Forces
- 2. Vector and Affine Spaces
- 2.1. Vector Spaces: Definition and Examples
- 2.2. Linear Independence and Dimension
- 2.3. Change of Basis and the Summation Convention
- 2.4. The Dual Space
- 2.5. Linear Operators and the Tensor Product
- 2.6. Isomorphisms and Iterated Dual
- 2.7. Inner-product Spaces
- 2.8. Affine Spaces
- 2.9. Banach Spaces
- 3. Tensor Algebras and Multivectors
- 3.1. The Algebra of Tensors on a Vector Space
- 3.2. The Contravariant and Covariant Subalgebras
- 3.3. Exterior Algebra
- 3.4. Multivectors and Oriented Affine Simplexes
- 3.5. The Faces of an Oriented Affine Simplex
- 3.6. Multicovectors or r-Forms
- 3.7. The Physical Meaning of r-Forms
- 3.8. Some Useful Isomorphisms
- Part 2. Differential Geometry
- 4. Differentiable Manifolds
- 4.1. Introduction
- 4.2. Some Topological Notions
- 4.3. Topological Manifolds
- 4.4. Differentiable Manifolds
- 4.5. Differentiability
- 4.6. Tangent Vectors
- 4.7. The Tangent Bundle
- 4.8. The Lie Bracket
- 4.9. The Differential of a Map
- 4.10. Immersions, Embeddings, Submanifolds
- 4.11. The Cotangent Bundle
- 4.12. Tensor Bundles
- 4.13. Pull-backs
- 4.14. Exterior Differentiation of Differential Forms
- 4.15. Some Properties of the Exterior Derivative
- 4.16. Riemannian Manifolds
- 4.17. Manifolds with Boundary
- 4.18. Differential Spaces and Generalized Bodies
- 5. Lie Derivatives, Lie Groups, Lie Algebras
- 5.1. Introduction
- 5.2. The Fundamental Theorem of the Theory of ODEs
- 5.3. The Flow of a Vector Field
- 5.4. One-parameter Groups of Transformations Generated by Flows
- 5.5. Time-Dependent Vector Fields
- 5.6. The Lie Derivative
- 5.7. Invariant Tensor Fields
- 5.8. Lie Groups
- 5.9. Group Actions
- 5.10. "One-Parameter Subgroups
- 5.11. Left-and Right-Invariant Vector Fields on a Lie Group
- 5.12. The Lie Algebra of a Lie Group
- 5.13. Down-to-Earth Considerations
- 5.14. The Adjoint Representation
- 6. Integration and Fluxes
- 6.1. Integration of Forms in Affine Spaces
- 6.2. Integration of Forms on Chains in Manifolds
- 6.3. Integration of Forms on Oriented Manifolds
- 6.4. Fluxes in Continuum Physics
- 6.5. General Bodies and Whitney's Geometric Integration Theory
- Part 3. Further Topics
- 7. Fibre Bundles
- 7.1. Product Bundles
- 7.2. Trivial Bundles
- 7.3. General Fibre Bundles
- 7.4. The Fundamental Existence Theorem
- 7.5. The Tangent and Cotangent Bundles
- 7.6. The Bundle of Linear Frames
- 7.7. Principal Bundles
- 7.8. Associated Bundles
- 7.9. Fibre-Bundle Morphisms
- 7.10. Cross Sections
- 7.11. Iterated Fibre Bundles
- 8. Inhomogeneity Theory
- 8.1. Material Uniformity
- 8.2. The Material Lie groupoid
- 8.3. The Material Principal Bundle
- 8.4. Flatness and Homogeneity
- 8.5. Distributions and the Theorem of Frobenius
- 8.6. JetBundles-and -Differential Equations
- 9. Connection, Curvature, Torsion
- 9.1. Ehresmann Connection
- 9.2. Connections in Principal Bundles
- 9.3. Linear Connections
- 9.4. G-Connections
- 9.5. Riemannian Connections
- 9.6. Material Homogeneity
- 9.7. Homogeneity Criteria
- Appendix A. A Primer in Continuum Mechanics
- A.1. Bodies and Configurations
- A.2. Observers and Frames
- A.3. Strain
- A.4. Volume and Area
- A.5. The Material Time Derivative
- A.6. Change of Reference
- A.7. Transport Theorems
- A.8. The General Balance Equation
- A.9. The Fundamental Balance Equations of Continuum Mechanics
- A.10. A Modicum of Constitutive Theory
- Index