Finite-dimensional linear algebra /
Saved in:
Author / Creator: | Gockenbach, Mark S. |
---|---|
Imprint: | Boca Raton, FL : CRC Press, c2010. |
Description: | xxi, 650 p. : ill. ; 25 cm. |
Language: | English |
Series: | Discrete mathematics and its applications CRC Press series on discrete mathematics and its applications. |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/8137691 |
Table of Contents:
- Preface
- About the author
- 1. Some problems posed on vector spaces
- 1.1. Linear equations
- 1.1.1. Systems of linear algebraic equations
- 1.1.2. Linear ordinary differential equations
- 1.1.3. Some interpretation: The structure of the solution set to a linear equation
- 1.1.4. Finite fields and applications in discrete mathematics
- 1.2. Best approximation
- 1.2.1. Overdetermined linear systems
- 1.2.2. Best approximation by a polynomial
- 1.3. Diagonalization
- 1.4. Summary
- 2. Fields and vector spaces
- 2.1. Fields
- 2.1.1. Definition and examples
- 2.1.2. Basic properties of fields
- 2.2. Vector spaces
- 2.2.1. Examples of vector spaces
- 2.3. Subspaces
- 2.4. Linear combinations and spanning sets
- 2.5. Linear independence
- 2.6. Basis and dimension
- 2.7. Properties of bases
- 2.8. Polynomial interpolation and the Lagrange basis
- 2.8.1. Secret sharing
- 2.9. Continuous piecewise polynomial functions
- 2.9.1. Continuous piecewise linear functions
- 2.9.2. Continuous piecewise quadratic functions
- 2.9.3. Error in polynomial interpolation
- 3. Linear operators
- 3.1. Linear operators
- 3.1.1. Matrix operators
- 3.2. More properties of linear operators
- 3.2.1. Vector spaces of operators
- 3.2.2. The matrix of a linear operator on Euclidean spaces
- 3.2.3. Derivative and differential operators
- 3.2.4. Representing spanning sets and bases using matrices
- 3.2.5. The transpose of a matrix
- 3.3. Isomorphic vector spaces
- 3.3.1. Injective and surjective functions; inverses
- 3.3.2. The matrix of a linear operator on general vector spaces
- 3.4. Linear operator equations
- 3.4.1. Homogeneous linear equations
- 3.4.2. Inhomogeneous linear equations
- 3.4.3. General solutions
- 3.5. Existence and uniqueness of solutions
- 3.5.1. The kernel of a linear operator and injectivity
- 3.5.2. The rank of a linear operator and surjectivity
- 3.5.3. Existence and uniqueness
- 3.6. The fundamental theorem; inverse operators
- 3.6.1. The inverse of a linear operator
- 3.6.2. The inverse of a matrix
- 3.7. Gaussian elimination
- 3.7.1. Computing A -1
- 3.7.2. Fields other than R
- 3.8. Newton's method
- 3.9. Linear ordinary differential equations
- 3.9.1. The dimension of ker(L)
- 3.9.2. Finding a basis for ker(L)
- 3.9.2.1. The easy case: Distinct real roots
- 3.9.2.2. The case of repeated real roots
- 3.9.2.3. The case of complex roots
- 3.9.3. The Wronskian test for linear independence
- 3.9.4. The Vandermonde matrix
- 3.10. Graph theory
- 3.10.1. The incidence matrix of a graph
- 3.10.2. Walks and matrix multiplication
- 3.10.3. Graph isomorphisms
- 3.11. Coding theory
- 3.11.1. Generator matrices; encoding and decoding
- 3.11.2. Error correction
- 3.11.3. The probability of errors
- 3.12. Linear programming
- 3.12.1. Specification of linear programming problems
- 3.12.2. Basic theory
- 3.12.3. The simplex method
- 3.12.3.1. Finding an initial BFS
- 3.12.3.2. Unbounded LPs
- 3.12.3.3. Degeneracy and cycling
- 3.12.4. Variations on the standard LPs
- 4. Determinants and eigenvalues
- 4.1. The determinant function
- 4.1.1. Permutations
- 4.1.2. The complete expansion of the determinant
- 4.2. Further properties of the determinant function
- 4.3. Practical computation of det (A)
- 4.3.1. A recursive formula for det (A)
- 4.3.2. Cramer's rule
- 4.4. A note about polynomials
- 4.5. Eigenvalues and the characteristic polynomial
- 4.5.1. Eigenvalues of real matrix
- 4.6. Diagonalization
- 4.7. Eigenvalues of linear operators
- 4.8. Systems of linear ODEs
- 4.8.1. Complex eigenvalues
- 4.8.2. Solving the initial value problem
- 4.8.3. Linear systems in matrix form
- 4.9. Integer programming
- 4.9.1. Totally unimodular matrices
- 4.9.2. Transportation problems
- 5. The Jordan canonical form
- 5.1. Invariant subspaces
- 5.1.1. Direct sums
- 5.1.2. Eigenspaces and generalized eigenspaces
- 5.2. Generalized eigenspaces
- 5.2.1. Appendix: Beyond generalized eigenspaces
- 5.2.2. The Cayley-Hamilton theorem
- 5.3. Nilpotent operators
- 5.4. The Jordan canonical form of a matrix
- 5.5. The matrix exponential
- 5.5.1. Definition of the matrix exponential
- 5.5.2. Computing the matrix exponential
- 5.6. Graphs and eigenvalues
- 5.6.1. Cospectral graphs
- 5.6.2. Bipartite graphs and eigenvalues
- 5.6.3. Regular graphs
- 5.6.4. Distinct eigenvalues of a graph
- 6. Orthogonality and best approximation
- 6.1. Norms and inner products
- 6.1.1. Examples of norms and inner products
- 6.2. The adjoint of a linear operator
- 6.2.1. The adjoint of a linear operator
- 6.3. Orthogonal vectors and bases
- 6.3.1. Orthogonal bases
- 6.4. The projection theorem
- 6.4.1. Overdetermined linear systems
- 6.5. The Gram-Schmidt process
- 6.5.1. Least-squares polynomial approximation
- 6.6. Orthogonal complements
- 6.6.1. The fundamental theorem of linear algebra revisited
- 6.7. Complex inner product spaces
- 6.7.1. Examples of complex inner product spaces
- 6.7.2. Orthogonality in complex inner product spaces
- 6.7.3. The adjoint of a linear operator
- 6.8. More on polynomial approximation
- 6.8.1. A weighted L 2 inner product
- 6.9. The energy inner product and Galerkin's method
- 6.9.1. Piecewise polynomials
- 6.9.2. Continuous piecewise quadratic functions
- 6.9.3. Higher degree finite element spaces
- 6.10. Gaussian quadrature
- 6.10.1. The trapezoidal rule and Simpson's rule
- 6.10.2. Gaussian quadrature
- 6.10.3. Orthogonal polynomials
- 6.10.4. Weighted Gaussian quadrature
- 6.11. The Helmholtz decomposition
- 6.11.1. The divergence theorem
- 6.11.2. Stokes's theorem
- 6.11.3. The Helmholtz decomposition
- 7. The spectral theory of symmetric matrices
- 7.1. The spectral theorem for symmetric matrices
- 7.1.1. Symmetric positive definite matrices
- 7.1.2. Hermitian matrices
- 7.2. The spectral theorem for normal matrices
- 7.2.1. Outer products and the spectral decomposition
- 7.3. Optimization and the Hessian matrix
- 7.3.1. Background
- 7.3.2. Optimization of quadratic functions
- 7.3.3. Taylor's theorem
- 7.3.4. First-and second-order optimality conditions
- 7.3.5. Local quadratic approximations
- 7.4. Lagrange multipliers
- 7.5. Spectral methods for differential equations
- 7.5.1. Eigenpairs of the differential operator
- 7.5.2. Solving the BVP using eigenfunctions
- 8. The singular value decomposition
- 8.1. Introduction to the SVD
- 8.1.1. The SVD for singular matrices
- 8.2. The SVD for general matrices
- 8.3. Solving least-squares problems using the SVD
- 8.4. The SVD and linear inverse problems
- 8.4.1. Resolving inverse problems through regularization
- 8.4.2. The truncated SVD method
- 8.4.3. Tikhonov regularization
- 8.5. The Smith normal form of a matrix
- 8.5.1. An algorithm to compute the Smith normal form
- 8.5.2. Applications of the Smith normal form
- 9. Matrix factorizations and numerical linear algebra
- 9.1. The LU factorization
- 9.1.1. Operation counts
- 9.1.2. Solving Ax=b using the LU factorization
- 9.2. Partial pivoting
- 9.2.1. Finite-precision arithmetic
- 9.2.2. Examples of errors in Gaussian elimination
- 9.2.3. Partial pivoting
- 9.2.4. The PLU factorization
- 9.3. The Cholesky factorization
- 9.4. Matrix norms
- 9.4.1. Examples of induced matrix norms
- 9.5. The sensitivity of linear systems to errors
- 9.6. Numerical stability
- 9.6.1. Backward error analysis
- 9.6.2. Analysis of Gaussian elimination with partial pivoting
- 9.7. The sensitivity of the least-squares problem
- 9.8. The QR factorization
- 9.8.1. Solving the least-squares problem
- 9.8.2. Computing the QR factorization
- 9.8.3. Backward stability of the Householder QR algorithm
- 9.8.4. Solving a linear system
- 9.9. Eigenvalues and simultaneous iteration
- 9.9.1. Reduction to triangular form
- 9.9.2. The power method
- 9.9.3. Simultaneous iteration
- 9.10. The QR algorithm
- 9.10.1. A practical QR algorithm
- 9.10.1.1. Reduction to upper Hessenberg form
- 9.10.1.2. The explicitly shifted QR algorithm
- 9.10.1.3. The implicitly shifted QR algorithm
- 10. Analysis in vector spaces
- 10.1. Analysis in R n
- 10.1.1. Convergence and continuity in R n
- 10.1.2. Compactness
- 10.1.3. Completeness of R n
- 10.1.4. Equivalence of norms on R n
- 10.2. Infinite-dimensional vector spaces
- 10.2.1. Banach and Hilbert spaces
- 10.3. Functional analysis
- 10.3.1. The dual of a Hilbert space
- 10.4. Weak convergence
- 10.4.1. Convexity
- A. The Euclidean algorithm
- A.0.1. Computing multiplicative inverses in Z p
- A.0.2. Related results
- B. Permutations
- C. Polynomials
- C.1. Rings of Polynomials
- C.2. Polynomial functions
- C.2.1. Factorization of polynomials
- D. Summary of analysis in R
- D.0.1. Convergence
- D.0.2. Completeness of R
- D.0.3. Open and closed sets
- D.0.4. Continuous functions
- Bibliography
- Index