Macromolecular crystallization and crystal perfection /

Saved in:
Bibliographic Details
Author / Creator:Chayen, Naomi E.
Imprint:Oxford ; New York : Oxford University Press, 2010.
Description:x, 221 p. : ill. ; 25 cm.
Language:English
Series:IUCr monographs on crystallography ; 24
International Union of Crystallography monographs on crystallography ; 24.
Subject:
Format: E-Resource Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8138844
Hidden Bibliographic Details
Other authors / contributors:Helliwell, John R.
Snell, Edward H.
ISBN:9780199213252 (hbk.)
0199213259 (hbk.)
Notes:Includes bibliographical references (p. [175]-217) and index.
Also available online.
Table of Contents:
  • Preface
  • Acknowledgements
  • Part I. Introduction and Overview
  • 1. Introduction
  • 1.1. Crystal growth
  • 1.2. Diffraction techniques
  • 1.2.1. X-rays
  • 1.2.2. Neutrons
  • 1.3. Crystal volume and quality
  • 1.3.1. Short-range order (intermolecular)
  • 1.3.2. Long-range order (domain structure)
  • 1.3.3. The combination of short- and long-range order
  • 1.4. Chapter summary
  • Part II. Crystallization
  • 2. Crystallization theory
  • 2.1. Chapter summary
  • 3. Practical methods of crystallization
  • 3.1. Batch
  • 3.2. Vapour diffusion
  • 3.3. Dialysis
  • 3.4. Free interface diffusion
  • 3.5. Converting between methods
  • 3.6. Chapter summary
  • 4. Screening
  • 4.1. Screens: problems and new developments
  • 4.2. Automation-and miniaturization of screening procedures
  • 4.2.1. The effect of high-throughput: crystallization robotics
  • 4.2.2. Analysis of large quantities of crystallization data
  • 4.2.3. Experiment volume considerations
  • 4.2.4. Imaging and monitoring of crystallization trials
  • 4.3. Chapter summary
  • 5. Optimization
  • 5.1. Practical uses of the crystallization phase diagram
  • 5.2. Methods for separating nucleation and growth
  • 5.2.1. Seeding
  • 5.2.2. Dilution techniques
  • 5.3. The application o flight-scattering techniques
  • 5.3.1. Static light scattering
  • 5.3.2. Dynamic light scattering
  • 5.4. Chapter summary
  • 6. Strategies to apply when high-quality crystals cannot be obtained
  • 6.1. Introduction
  • 6.2. Non-covalent modification of the sample
  • 6.3. Covalent modification of the sample
  • 6.3.1. Reductive methylation
  • 6.3.2. General chemical modification
  • 6.4. Mutagenesis, domain refinement and homologues
  • 6.4.1. Surface-entropy reduction
  • 6.4.2. Proteolysis
  • 6.4.3. Orthologues and homologues
  • 6.5. Antibody fragments
  • 6.6. Chapter summary
  • 7. Membrane proteins
  • 7.1. Introduction
  • 7.2. Crystallization
  • 7.2.1. Screening with detergents
  • 1.2.2. Lipidic cubic-phase crystallization
  • 7.2.3. Antibody fragment approaches
  • 7.3. Characterization using neutron-enhanced contrast
  • 7.4. Chapter summary
  • 8. Alternative approaches
  • 8.1. Gel growth
  • 8.2. Microgravity
  • 8.2.1. Interferometry
  • 8.2.2. Depletion zone
  • 8.3. Microfluidics
  • 8.4. Magnetic and electric fields
  • 8.5. Chapter summary
  • Part III. Diffraction
  • 9. Experimental aspects
  • 9.1. The diffraction pattern
  • 9.2. Structural detail
  • 9.3. Determining structure when the resolution is not ideal
  • 9.4. How accurate is the structure?
  • 9.5. Chapter summary
  • 10. Analysis of the molecular short-range order
  • 10.1. Structural data
  • 10.2. Thermal motion and diffuse scattering
  • 10.2.1. Diffuse scattering as a source of measurement error in the Bragg intensities
  • 10.3. Chapter summary
  • 11. Analysis of long-range order
  • 11.1. Reflection profiling
  • 11.2. Topography
  • 11.2.1. Photography-based topography
  • 11.2.2. Digital-based topography
  • 11.3. Reciprocal-space mapping
  • 11.4. Combinational analysis and chapter summary
  • 12. Macromolecular crystals and twinning
  • 12.1. Historical examples
  • 12.2. Types of twinning
  • 12.3. The twin fraction and testing for twinned data
  • 12.4. Using twinned data
  • 12.5. Overcoming twinning in crystals
  • 12.6. How prevalent is twinning?
  • 12.7. Chapter summary
  • 13. Other macromolecular crystal diffraction disorders
  • 13.1. Introduction
  • 13.2. Case studies
  • 13.3. Chapter summary
  • 14. Degradation and improvement of crystal perfection
  • 14.1. Ageing
  • 14.2. Radiation damage
  • 14.3. Cryo-cooling
  • 14.4. Dehydration and humidity control
  • 14.5. Chapter summary
  • 15. Unusual diffraction geometries
  • 15.1. Chapter summary
  • 16. Making the most of difficult crystals - beamline and detector optimization
  • 16.1. Introduction
  • 16.2. Geometry and end-station instrumentation
  • 16.3. Signal and noise considerations
  • 16.4. Very small crystal volume'microcrystals'
  • 16.5. Phasing and the available instrumentation
  • 16.6. Robotics, telepresence and remote access
  • 16.7. More specialized applications
  • 16.8. Chapter summary
  • 17. Protein powders-making the most of tiny crystallites in bulk
  • 17.1. Introduction
  • 17.2. Quantitative protein powder analyses have opened up in recent years
  • 17.3. Structure determination of unknown proteins?
  • 17.4. Characterization of protein crystal polymorphism
  • 17.5. Chapter summary
  • 18. Complementary techniques
  • 18.1. Chapter summary
  • Part IV. The Future
  • 19. The X-ray laser and the single molecule - no crystal needed?
  • 20. Overall summary and future thoughts
  • Glossary of abbreviations, terms and symbols
  • Abbreviations
  • General
  • Synchrotron sources
  • Neutron sources
  • Terms
  • Crystallization
  • X-ray analysis
  • Symbols
  • Crystallization and crystal-growth-monitoring symbols
  • Diffraction symbols
  • References
  • Index