Introduction to seismology /
Saved in:
Author / Creator: | Shearer, Peter M., 1956- |
---|---|
Edition: | 2nd ed. |
Imprint: | Cambridge : Cambridge University Press, c2009. |
Description: | xiv, 396 p. : ill., maps. |
Language: | English |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/8209009 |
Table of Contents:
- Preface to the first edition
- Preface to the second edition
- Acknowledgment
- 1. Introduction
- 1.1. A brief history of seismology
- 1.2. Exercises
- 2. Stress and strain
- 2.1. The stress tensor
- 2.1.1. Example: Computing the traction vector
- 2.1.2. Principal axes of stress
- 2.1.3. Example: Computing the principal axes
- 2.1.4. Deviatoric stress
- 2.1.5. Values for stress
- 2.2. The strain tensor
- 2.2.1. Values for strain
- 2.2.2. Example: Computing strain for a seismic wave
- 2.3. The linear stress-strain relationship
- 2.3.1. Units for elastic moduli
- 2.4. Exercises
- 3. The seismic wave equation
- 3.1. Introduction: The wave equation
- 3.2. The momentum equation
- 3.3. The seismic wave equation
- 3.3.1. Potentials
- 3.4. Plane waves
- 3.4.1. Example: Harmonic plane wave equation
- 3.5. Polarizations of P and S waves
- 3.6. Spherical waves
- 3.7. Methods for computing synthetic seismograms å
- 3.8. The future of seismology? å
- 3.9. Equations for 2-D isotropic finite differences å
- 3.10. Exercises
- 4. Ray theory: Travel times
- 4.1. Snell's law
- 4.2. Ray paths for laterally homogeneous models
- 4.2.1. Example: Computing X(p) and T(p)
- 4.2.2. Ray tracing through velocity gradients
- 4.3. Travel time curves and delay times
- 4.3.1. Reduced velocity
- 4.3.2. The ¿(p) function
- 4.4. Low-velocity zones
- 4.5. Summary of 1-D ray tracing equations
- 4.6. Spherical-Earth ray tracing
- 4.7. The Earth-flattening transformation
- 4.8. Three-dimensional ray tracing å
- 4.9. Ray nomenclature
- 4.9.1. Crustal phases
- 4.9.2. Whole Earth phases
- 4.9.3. PKJKP: The Holy Grail of body wave seismology
- 4.10. Global body-wave observations
- 4.11. Exercises
- 5. Inversion of travel time data
- 5.1. One-dimensional velocity inversion
- 5.2. Straight-line fitting
- 5.2.1. Example: Solving for a layer-cake model
- 5.2.2. Other ways to fit the T(X) curve
- 5.3. ¿(p) Inversion
- 5.3.1. Example: The layer-cake model revisited
- 5.3.2. Obtaining ¿(p) constraints
- 5.4. Linear programming and regularization methods
- 5.5. Summary: One-dimensional velocity inversion
- 5.6. Three-dimensional velocity inversion
- 5.6.1. Setting up the tomography problem
- 5.6.2. Solving the tomography problem
- 5.6.3. Tomography complications
- 5.6.4. Finite frequency tomography
- 5.7. Earthquake location
- 5.7.1. Iterative location methods
- 5.7.2. Relative event location methods
- 5.8. Exercises
- 6. Ray theory: Amplitude and phase
- 6.1. Energy in seismic waves
- 6.2. Geometrical spreading in 1-D velocity models
- 6.3. Reflection and transmission coefficients
- 6.3.1. SH-wave reflection and transmission coefficients
- 6.3.2. Example: Computing SH coefficients
- 6.3.3. Vertical incidence coefficients
- 6.3.4. Energy-normalized coefficients
- 6.3.5. Dependence on ray angle
- 6.4. Turning points and Hilbert transforms
- 6.5. Matrix methods for modeling plane waves å
- 6.6. Attenuation
- 6.6.1. Example: Computing intrinsic attenuation
- 6.6.2. t * and velocity dispersion
- 6.6.3. The absorption band model å
- 6.6.4. The standard linear solid å
- 6.6.5. Earth's attenuation
- 6.6.6. Observing Q
- 6.6.7. Non-linear attenuation
- 6.6.8. Seismic attenuation and global politics
- 6.7. Exercises
- 7. Reflection seismology
- 7.1. Zero-offset sections
- 7.2. Common midpoint stacking
- 7.3. Sources and deconvolution
- 7.4. Migration
- 7.4.1. Huygens' principle
- 7.4.2. Diffraction hyperbolas
- 7.4.3. Migration methods
- 7.5. Velocity analysis
- 7.5.1. Statics corrections
- 7.6. Receiver functions
- 7.7. Kirchhoff theory å
- 7.7.1. Kirchhoff applications
- 7.7.2. How to write a Kirchhoff program
- 7.7.3. Kirchhoff migration
- 7.8. Exercises
- 8. Surface waves and normal modes
- 8.1. Love waves
- 8.1.1. Solution for a single layer
- 8.2. Rayleigh waves
- 8.3. Dispersion
- 8.4. Global surface waves
- 8.5. Observing surface waves
- 8.6. Normal modes
- 8.7. Exercises
- 9. Earthquakes and source theory
- 9.1. Green's functions and the moment tensor
- 9.2. Earthquake faults
- 9.2.1. Non-double-couple sources
- 9.3. Radiation patterns and beach balls
- 9.3.1. Example: Plotting a focal mechanism
- 9.4. Far-field pulse shapes
- 9.4.1. Directivity
- 9.4.2. Source spectra
- 9.4.3. Empirical Green's functions
- 9.5. Stress drop
- 9.5.1. Self-similar earthquake scaling
- 9.6. Radiated seismic energy
- 9.6.1. Earthquake energy partitioning
- 9.7. Earthquake magnitude
- 9.7.1. The b value
- 9.7.2. The intensity scale
- 9.8. Finite slip modeling
- 9.9. The heat flow paradox
- 9.10. Exercises
- 10. Earthquake prediction
- 10.1. The earthquake cycle
- 10.2. Earthquake triggering
- 10.3. Searching for precursors
- 10.4. Are earthquakes unpredictable?
- 10.5. Exercises
- 11. Instruments, noise, and anisotropy
- 11.1. Instruments
- 11.1.1. Modern seismographs
- 11.2. Earth noise
- 11.3. Anisotropy å
- 11.3.1. Snell's law at an interface
- 11.3.2. Weak anisotropy
- 11.3.3. Shear-wave splitting
- 11.3.4. Hexagonal anisotropy
- 11.3.5. Mechanisms for anisotropy
- 11.3.6. Earth's anisotropy
- 11.4. Exercises
- Appendix A. The PREM model
- Appendix B. Math review
- B.l. Vector calculus
- B.2. Complex numbers
- Appendix C. The eikonal equation
- Appendix D. Fortran subroutines
- Appendix E. Time series and Fourier transforms
- E.l. Convolution
- E.2. Fourier transform
- E.3. Hilbert transform
- Bibliography
- Index