Introduction to seismology /

Saved in:
Bibliographic Details
Author / Creator:Shearer, Peter M., 1956-
Edition:2nd ed.
Imprint:Cambridge : Cambridge University Press, c2009.
Description:xiv, 396 p. : ill., maps.
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8209009
Hidden Bibliographic Details
ISBN:9780521882101 (cased)
0521882109 (cased)
9780521708425 (pbk.)
0521708427 (pbk.)
Notes:Includes bibliographical references and index.
Electronic reproduction. Palo Alto, Calif. : ebrary, 2009. Available via World Wide Web. Access may be limited to ebrary affiliated libraries.
Table of Contents:
  • Preface to the first edition
  • Preface to the second edition
  • Acknowledgment
  • 1. Introduction
  • 1.1. A brief history of seismology
  • 1.2. Exercises
  • 2. Stress and strain
  • 2.1. The stress tensor
  • 2.1.1. Example: Computing the traction vector
  • 2.1.2. Principal axes of stress
  • 2.1.3. Example: Computing the principal axes
  • 2.1.4. Deviatoric stress
  • 2.1.5. Values for stress
  • 2.2. The strain tensor
  • 2.2.1. Values for strain
  • 2.2.2. Example: Computing strain for a seismic wave
  • 2.3. The linear stress-strain relationship
  • 2.3.1. Units for elastic moduli
  • 2.4. Exercises
  • 3. The seismic wave equation
  • 3.1. Introduction: The wave equation
  • 3.2. The momentum equation
  • 3.3. The seismic wave equation
  • 3.3.1. Potentials
  • 3.4. Plane waves
  • 3.4.1. Example: Harmonic plane wave equation
  • 3.5. Polarizations of P and S waves
  • 3.6. Spherical waves
  • 3.7. Methods for computing synthetic seismograms å
  • 3.8. The future of seismology? å
  • 3.9. Equations for 2-D isotropic finite differences å
  • 3.10. Exercises
  • 4. Ray theory: Travel times
  • 4.1. Snell's law
  • 4.2. Ray paths for laterally homogeneous models
  • 4.2.1. Example: Computing X(p) and T(p)
  • 4.2.2. Ray tracing through velocity gradients
  • 4.3. Travel time curves and delay times
  • 4.3.1. Reduced velocity
  • 4.3.2. The ¿(p) function
  • 4.4. Low-velocity zones
  • 4.5. Summary of 1-D ray tracing equations
  • 4.6. Spherical-Earth ray tracing
  • 4.7. The Earth-flattening transformation
  • 4.8. Three-dimensional ray tracing å
  • 4.9. Ray nomenclature
  • 4.9.1. Crustal phases
  • 4.9.2. Whole Earth phases
  • 4.9.3. PKJKP: The Holy Grail of body wave seismology
  • 4.10. Global body-wave observations
  • 4.11. Exercises
  • 5. Inversion of travel time data
  • 5.1. One-dimensional velocity inversion
  • 5.2. Straight-line fitting
  • 5.2.1. Example: Solving for a layer-cake model
  • 5.2.2. Other ways to fit the T(X) curve
  • 5.3. ¿(p) Inversion
  • 5.3.1. Example: The layer-cake model revisited
  • 5.3.2. Obtaining ¿(p) constraints
  • 5.4. Linear programming and regularization methods
  • 5.5. Summary: One-dimensional velocity inversion
  • 5.6. Three-dimensional velocity inversion
  • 5.6.1. Setting up the tomography problem
  • 5.6.2. Solving the tomography problem
  • 5.6.3. Tomography complications
  • 5.6.4. Finite frequency tomography
  • 5.7. Earthquake location
  • 5.7.1. Iterative location methods
  • 5.7.2. Relative event location methods
  • 5.8. Exercises
  • 6. Ray theory: Amplitude and phase
  • 6.1. Energy in seismic waves
  • 6.2. Geometrical spreading in 1-D velocity models
  • 6.3. Reflection and transmission coefficients
  • 6.3.1. SH-wave reflection and transmission coefficients
  • 6.3.2. Example: Computing SH coefficients
  • 6.3.3. Vertical incidence coefficients
  • 6.3.4. Energy-normalized coefficients
  • 6.3.5. Dependence on ray angle
  • 6.4. Turning points and Hilbert transforms
  • 6.5. Matrix methods for modeling plane waves å
  • 6.6. Attenuation
  • 6.6.1. Example: Computing intrinsic attenuation
  • 6.6.2. t * and velocity dispersion
  • 6.6.3. The absorption band model å
  • 6.6.4. The standard linear solid å
  • 6.6.5. Earth's attenuation
  • 6.6.6. Observing Q
  • 6.6.7. Non-linear attenuation
  • 6.6.8. Seismic attenuation and global politics
  • 6.7. Exercises
  • 7. Reflection seismology
  • 7.1. Zero-offset sections
  • 7.2. Common midpoint stacking
  • 7.3. Sources and deconvolution
  • 7.4. Migration
  • 7.4.1. Huygens' principle
  • 7.4.2. Diffraction hyperbolas
  • 7.4.3. Migration methods
  • 7.5. Velocity analysis
  • 7.5.1. Statics corrections
  • 7.6. Receiver functions
  • 7.7. Kirchhoff theory å
  • 7.7.1. Kirchhoff applications
  • 7.7.2. How to write a Kirchhoff program
  • 7.7.3. Kirchhoff migration
  • 7.8. Exercises
  • 8. Surface waves and normal modes
  • 8.1. Love waves
  • 8.1.1. Solution for a single layer
  • 8.2. Rayleigh waves
  • 8.3. Dispersion
  • 8.4. Global surface waves
  • 8.5. Observing surface waves
  • 8.6. Normal modes
  • 8.7. Exercises
  • 9. Earthquakes and source theory
  • 9.1. Green's functions and the moment tensor
  • 9.2. Earthquake faults
  • 9.2.1. Non-double-couple sources
  • 9.3. Radiation patterns and beach balls
  • 9.3.1. Example: Plotting a focal mechanism
  • 9.4. Far-field pulse shapes
  • 9.4.1. Directivity
  • 9.4.2. Source spectra
  • 9.4.3. Empirical Green's functions
  • 9.5. Stress drop
  • 9.5.1. Self-similar earthquake scaling
  • 9.6. Radiated seismic energy
  • 9.6.1. Earthquake energy partitioning
  • 9.7. Earthquake magnitude
  • 9.7.1. The b value
  • 9.7.2. The intensity scale
  • 9.8. Finite slip modeling
  • 9.9. The heat flow paradox
  • 9.10. Exercises
  • 10. Earthquake prediction
  • 10.1. The earthquake cycle
  • 10.2. Earthquake triggering
  • 10.3. Searching for precursors
  • 10.4. Are earthquakes unpredictable?
  • 10.5. Exercises
  • 11. Instruments, noise, and anisotropy
  • 11.1. Instruments
  • 11.1.1. Modern seismographs
  • 11.2. Earth noise
  • 11.3. Anisotropy å
  • 11.3.1. Snell's law at an interface
  • 11.3.2. Weak anisotropy
  • 11.3.3. Shear-wave splitting
  • 11.3.4. Hexagonal anisotropy
  • 11.3.5. Mechanisms for anisotropy
  • 11.3.6. Earth's anisotropy
  • 11.4. Exercises
  • Appendix A. The PREM model
  • Appendix B. Math review
  • B.l. Vector calculus
  • B.2. Complex numbers
  • Appendix C. The eikonal equation
  • Appendix D. Fortran subroutines
  • Appendix E. Time series and Fourier transforms
  • E.l. Convolution
  • E.2. Fourier transform
  • E.3. Hilbert transform
  • Bibliography
  • Index