Analysis of gravitational-wave data /

Saved in:
Bibliographic Details
Author / Creator:Jaranowski, Piotr.
Imprint:Cambridge ; New York : Cambridge University Press, 2009.
Description:xii, 257 p. : ill.
Language:English
Series:Cambridge monographs on particle physics, nuclear physics, and cosmology ; 29
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8209035
Hidden Bibliographic Details
Other authors / contributors:KroĢlak, Andrzej.
ISBN:9780521864596
0521864593
Notes:Includes bibliographical references and index.
Electronic reproduction. Palo Alto, Calif. : ebrary, 2009. Available via World Wide Web. Access may be limited to ebrary affiliated libraries.
Table of Contents:
  • Preface
  • Notation and conventions
  • 1. Overview of the theory of gravitational radiation
  • 1.1. Linearized general relativity
  • 1.2. Plane monochromatic gravitational waves
  • 1.3. Description in the TT coordinate system
  • 1.4. Description in the observer's proper reference frame
  • 1.5. Gravitational waves in the curved background
  • 1.6. Energy-momentum tensor for gravitational waves
  • 1.7. Generation of gravitational waves and radiation reaction
  • 2. Astrophysical sources of gravitational waves
  • 2.1. Burst sources
  • 2.2. Periodic sources
  • 2.3. Stochastic sources
  • 2.4. Case study: binary systems
  • 2.5. Case study: a rotating triaxial ellipsoid
  • 2.6. Case study: supernova explosion
  • 2.7. Case study: stochastic background
  • 3. Statistical theory of signal detection
  • 3.1. Random variables
  • 3.2. Stochastic processes
  • 3.3. Hypothesis testing
  • 3.4. The matched filter in Gaussian noise: deterministic signal
  • 3.5. Estimation of stochastic signals
  • 3.6. Estimation of parameters
  • 3.7. Non-stationary stochastic processes
  • 4. Time series analysis
  • 4.1. Sample mean and correlation function
  • 4.2. Power spectrum estimation
  • 4.3. Tests for periodicity
  • 4.4. Goodness-of-fit tests
  • 4.5. Higher-order spectra
  • 5. Responses of detectors to gravitational waves
  • 5.1. Detectors of gravitational waves
  • 5.2. Doppler shift between freely falling observers
  • 5.3. Long-wavelength approximation
  • 5.4. Responses of the solar-system-based detectors
  • 6. Maximum-likelihood detection in Gaussian noise
  • 6.1. Deterministic signals
  • 6.2. Case studies: deterministic signals
  • 6.3. Network of detectors
  • 6.4. Detection of stochastic signals
  • 7. Data analysis tools
  • 7.1. Linear signal model
  • 7.2. Grid of templates in the parameter space
  • 7.3. Numerical algorithms to calculate the F-statistic
  • 7.4. Analysis of the candidates
  • Appendix A. The chirp waveform
  • Appendix B. Proof of the Neyman-Pearson lemma
  • Appendix C. Detector's beam-pattern functions
  • C.1. LISA detector
  • C.2. Earth-based detectors
  • Appendix D. Response of the LISA detector to an almost monochromatic wave
  • Appendix E. Amplitude parameters of periodic waves
  • References
  • Index