Fractional calculus and waves in linear viscoelasticity : an introduction to mathematical models /
Saved in:
Author / Creator: | Mainardi, F. (Francesco), 1942- |
---|---|
Imprint: | London ; Hackensack, NJ : Imperial College Press, c2010. |
Description: | xx, 347 p. : ill. ; 24 cm. |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/8263028 |
Table of Contents:
- Preface
- Acknowledgements
- List of Figures
- 1. Essentials of Fractional Calculus
- 1.1. The fractional integral with support in IR +
- 1.2. The fractional derivative with support in IR +
- 1.3. Fractional relaxation equations in IR +
- 1.4. Fractional integrals and derivatives with support in IR
- 1.5. Notes
- 2. Essentials of Linear Viscoelasticity
- 2.1. Introduction
- 2.2. History in IR + : the Laplace Transform approach
- 2.3. The four types of viscoelasticity
- 2.4. The Classical mechanical models
- 2.5. The time - and frequency - spectral functions
- 2.6. History in IR: the Fourier transform approach and the dynamic functions
- 2.7. Storage and dissipation of energy: the loss tangent
- 2.8. The dynamic functions for the mechanical models
- 2.9. Notes
- 3. Fractional Viscoelastic Models
- 3.1. The fractional calculus in the mechanical models
- 3.1.1. Power-Law creep and the Scott-Blair model
- 3.1.2. The correspondence principle
- 3.1.3. The fractional mechanical models
- 3.2. Analysis of the fractional Zener model
- 3.2.1. The material and the spectral functions
- 3.2.2. Dissipation: theoretical considerations
- 3.2.3. Dissipation: experimental checks
- 3.3. The physical interpretation of the fractional Zener model via fractional diffusion
- 3.4. Which type of fractional derivative? Caputo or Riemann-Liouville?
- 3.5. Notes
- 4. Waves in Linear Viscoelastic Media: Dispersion and Dissipation
- 4.1. Introduction
- 4.2. Impact waves in linear viscoelasticity
- 4.2.1. Statement of the problem by Laplace transforms
- 4.2.2. The structure of wave equations in the space-time domain
- 4.2.3. Evolution equations for the mechanical models
- 4.3. Dispersion relation and complex refraction index
- 4.3.1. Generalities
- 4.3.2. Dispersion: phase velocity and group velocity
- 4.3.3. Dissipation: the attenuation coefficient and the specific dissipation function
- 4.3.4. Dispersion and attenuation for the Zener and the Maxwell models
- 4.3.5. Dispersion and attenuation for the fractional Zener model
- 4.3.6. The Klein-Gordon equation with dissipation
- 4.4. The Brillouin signal velocity
- 4.4.1. Generalities
- 4.4.2. Signal velocity via steepest-descent path
- 4.5. Notes
- 5. Waves in Linear Viscoelastic Media: Asymptotic Representations
- 5.1. The regular wave-front expansion
- 5.2. The singular wave-front expansion
- 5.3. The saddle-point approximation
- 5.3.1. Generalities
- 5.3.2. The Lee-Kanter problem for the Maxwell model
- 5.3.3. The Jeffreys problem for the Zener model
- 5.4. The matching between the wave-front and the saddle-point approximations
- 6. Diffusion and Wave-Propagation via Fractional Calculus
- 6.1. Introduction
- 6.2. Derivation of the fundamental solutions
- 6.3. Basic properties and plots of the Green functions
- 6.4. The Signalling problem in a viscoelastic solid with a power-law creep
- 6.5. Notes
- Appendix A. The Eulerian Functions
- A.1. The Gamma function: ¿(z)
- A.2. The Beta function: B(p,q)
- A.3. Logarithmic derivative of the Gamma function
- A.4. The incomplete Gamma functions
- Appendix B. The Bessel Functions
- B.1. The standard Bessel functions
- B.2. The modified Bessel functions
- B.3. Integral representations and Laplace transforms
- B.4. The Airy functions
- Appendix C. The Error Functions
- C.1. The two standard Error functions
- C.2. Laplace transform pairs
- C.3. Repeated integrals of the Error functions
- C.4. The Erfi function and the Dawson integral
- C.5. The Fresnel integrals
- Appendix D. The Exponential Integral Functions
- D.1. The classical Exponential integrals Ei(z), ¿ 1 (z)
- D.2. The modified Exponential integral Ein(z)
- D.3. Asymptotics for the Exponential integrals
- D.4. Laplace transform pairs for Exponential integrals
- Appendix E. The Mittag-Leffler Functions
- E.1. The classical Mittag-Leffler function E ¿ (z)
- E.2. The Mittag-Leffler function with two parameters
- E.3. Other functions of the Mittag-Leffler type
- E.4. The Laplace transform pairs
- E.5. Derivatives of the Mittag-Leffler functions
- E.6. Summation and integration of Mittag-Leffler functions
- E.7. Applications of the Mittag-Leffler functions to the Abel integral equations
- E.8. Notes
- Appendix F. The Wright Functions
- F.1. The Wright functions W ¿,¿ (z)
- F.2. The auxiliary functions F ¿ (z) and M ¿ (z) in C
- F.3. The auxiliary functions F ¿ (x) and M ¿ (x) in IR
- F.4. The Laplace transform pairs
- F.5. The Wright M-functions in probability
- F.6. Notes
- Bibliography
- Index