"Moonshine" of finite groups /
Saved in:
Author / Creator: | Harada, Koichiro, 1941- |
---|---|
Imprint: | Zürich : European Mathematical Society, c2010. |
Description: | vi, 76 p. : ill. ; 24 cm. |
Language: | English |
Series: | EMS series of lectures in mathematics EMS series of lectures in mathematics. |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/8266666 |
MARC
LEADER | 00000cam a2200000Ia 4500 | ||
---|---|---|---|
001 | 8266666 | ||
005 | 20130405124300.0 | ||
008 | 101025s2010 sz a b 000 0 eng d | ||
003 | ICU | ||
010 | |a 2012419647 | ||
020 | |a 3037190906 | ||
020 | |a 9783037190906 | ||
035 | |a (OCoLC)671693342 | ||
035 | |a 8266666 | ||
035 | |a co3376909 | ||
040 | |a YDXCP |b eng |c YDXCP |d STF |d CUS |d CDX |d MIA |d MUU |d MCW |d DLC |d A7U |d OCLCQ | ||
049 | |a CGUA | ||
066 | |c (N | ||
090 | |a QA335 |b .H37 2010 | ||
100 | 1 | |a Harada, Koichiro, |d 1941- |0 http://id.loc.gov/authorities/names/n98061932 |1 http://viaf.org/viaf/166242771 | |
245 | 1 | 1 | |a "Moonshine" of finite groups / |c Koichiro Harada. |
260 | |a Zürich : |b European Mathematical Society, |c c2010. | ||
300 | |a vi, 76 p. : |b ill. ; |c 24 cm. | ||
336 | |a text |b txt |2 rdacontent |0 http://id.loc.gov/vocabulary/contentTypes/txt | ||
337 | |a unmediated |b n |2 rdamedia |0 http://id.loc.gov/vocabulary/mediaTypes/n | ||
338 | |a volume |b nc |2 rdacarrier |0 http://id.loc.gov/vocabulary/carriers/nc | ||
490 | 1 | |a EMS series of lectures in mathematics | |
504 | |a Includes bibliographical references (p. 67-76). | ||
505 | 0 | |6 880-01 |a Modular functions and modular forms -- Dedekind eta function -- "Moonshine" of finite groups -- Multiplicative product of n functions -- Appendix. Genus zero discrete groups. | |
650 | 0 | |a Finite groups. |0 http://id.loc.gov/authorities/subjects/sh85048354 | |
650 | 0 | |a Modular functions. |0 http://id.loc.gov/authorities/subjects/sh85052344 | |
650 | 0 | |a Vertex operator algebras. |0 http://id.loc.gov/authorities/subjects/sh88005699 | |
650 | 0 | |a Mathematical physics. |0 http://id.loc.gov/authorities/subjects/sh85082129 | |
650 | 7 | |a Group theory. |2 fast |0 http://id.worldcat.org/fast/fst00948521 | |
650 | 7 | |a Finite groups. |2 fast |0 http://id.worldcat.org/fast/fst00924908 | |
650 | 7 | |a Mathematical physics. |2 fast |0 http://id.worldcat.org/fast/fst01012104 | |
650 | 7 | |a Modular functions. |2 fast |0 http://id.worldcat.org/fast/fst01024502 | |
650 | 7 | |a Vertex operator algebras. |2 fast |0 http://id.worldcat.org/fast/fst01165591 | |
830 | 0 | |a EMS series of lectures in mathematics. |0 http://id.loc.gov/authorities/names/no2004044736 | |
903 | |a HeVa | ||
880 | 0 | 0 | |6 505-01/(N |g 1 Modular functions and modular forms -- |g 1.1 |t Linear fractional transformations -- |g 1.2 |t Fundamental domains, invariant measures -- |g 1.3 |t Riemann surfaces associated with Fuchsian groups -- |g 1.4 |t Modular functions and modular forms -- |g 1.5 |t Congruence subgroups -- |g 1.6 |t Cusps of Г 0.(N) /H* -- |g 1.7 |t The normalizer of Г 0(N) -- |g 1.8 |t The genus of Г 0(N) / H* -- |g 1.9 |t The genus of Г H*, where Г= (Г0(N), We, Wf,) -- |g 1.10 |t The subgroup n\h + e, f -- |g 2. |t Dedekind eta function -- |g 2.1 |t The Dedekind eta function n(z) -- |g 2.2 |t The Poisson Sum Formula and applications -- |g 2.3 |t Theta transformation formula -- |g 2.4 |t Transformation formula for n(t) -- |g 2.5 |t Quadratic reciprocity law, quadratic characters, and Petersson constants -- |g 3 |t "Moonshine" of finite groups 31 3.1 Generalized partitions -- |g 3.2 |t Harmonies -- |g 3.3 |t Symmetric and alternating products of representations -- |g 4. |t Multiplicative product of n functions -- |g Appendix. |t Genus zero discrete groups 65 Bibliography. |
929 | |a cat | ||
999 | f | f | |i 434693a1-070b-5f76-90b6-0d9ded8c3f25 |s 4f408e11-3bb8-5347-8cbe-4d165355976f |
928 | |t Library of Congress classification |a QA177 .H37 2010 |l Eck |c Eck-Eck |i 6604016 | ||
927 | |t Library of Congress classification |a QA177 .H37 2010 |l Eck |c Eck-Eck |e DOWL |b 100008017 |i 8851453 |