The descent map from automorphic representations of GL(n) to classical groups /

Saved in:
Bibliographic Details
Author / Creator:Ginzburg, D. (David)
Imprint:Singapore ; Hackensack, NJ : World Scientific Pub., c2011.
Description:ix, 339 p. : ill. ; 26 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8513946
Hidden Bibliographic Details
Other authors / contributors:Rallis, Stephen, 1942-
Soudry, David, 1956-
ISBN:9789814304986
9814304980
Notes:Includes bibliographical references (p. 335-338) and index.
Table of Contents:
  • Preface
  • 1. Introduction
  • 1.1. Overview
  • 1.2. Formulas for the Weil representation
  • 1.3. The case, where H is unitary and the place v splits in E
  • 2. On Certain Residual Representations
  • 2.1. The groups
  • 2.2. The Eisenstein series to be considered
  • 2.3. L-groups and representations related to P ¿
  • 2.4. The residue representation
  • 2.5. The case of a maximal parabolic subgroup (r = 1)
  • 2.6. A preliminary lemma on Eisenstein series on GL n
  • 2.7. Constant terms of E (h, f ¿,s )
  • 2.8. Description of W{{M ¿ , D ¿ )
  • 2.9. Continuation of the proof of Theorem 2.1
  • 3. Coefficients of Gelfand-Graev Type, of Fourier-Jacobi Type, and Descent
  • 3.1. Gelfand-Graev coefficients
  • 3.2. Fourier-Jacobi coefficients
  • 3.3. Nilpotent orbits
  • 3.4. Global integrals representing L-functions I
  • 3.5. Global integrals representing L-functions II
  • 3.6. Definition of the descent
  • 3.7. Definition of Jacquet modules corresponding to Gelfand-Graev characters
  • 3.8. Definition of Jacquet modules corresponding to Fourier-Jacobi characters
  • 4. Some double coset decompositions
  • 4.1. The space Qj\h(V)k/Qz
  • 4.2. A set of representatives for Qj\h(V)k/Qe
  • 4.3. Stabilizers
  • 4.4. The set Q\h(Wm, l)k/Ll, wo
  • 5. Jacquet modules of parabolic inductions: Gelfand-Graev characters
  • 5.1. The case where K is a field
  • 5.2. The case K = k ⊕ k
  • 6. Jacquet modules of parabolic inductions: Fourier-Jacobi characters
  • 6.1. The case where K is a field
  • 6.2. The case K = k ⊕ k
  • 7. The tower property
  • 7.1. A general lemma on "exchanging roots"
  • 7.2. A formula for constant terms of Gelfand-Graev coefficients
  • 7.3. Global Gelfand-Graev models for cuspidal representations
  • 7.4. The general case: H is neither split nor quasi-split
  • 7.5. Global Gelfand-Graev models for the residual representations E r
  • 7.6. A formula for constant terms of Fourier-Jacobi coefficients
  • 7.7. Global Fourier-Jacobi models for cuspidal representations
  • 7.8. Global Fourier-Jacobi models for the residual representations E r
  • 8. Non-vanishing of the descent I
  • 8.1. The Fourier coefficient corresponding to the partition(m, m,m' _ 2m)
  • 8.2. Conjugation of Sm by the element ±_m
  • 8.3. Exchanging the roots y1,2 and x1,1 (dimEV = 2m , m > 2)
  • 8.4. First induction step: exchanging the roots yi, j and Xj-iti, for 1
  • 8.5. First induction step: odd orthogonal groups
  • 8.6. Second induction step: exchanging the roots yi, j and xj-i, i, for i + j [3*P\ (dmiEV = 2m)
  • 8.7. Completion of the proof of Theorems 8.1, 8.2; dimEV = 2m
  • 8.8. Completion of the proof of Theorem 8.3
  • 8.9. Second induction step: odd orthogonal groups
  • 8.10. Completion of the proof of Theorems 8.1, 8.2; h(V) odd orthogonal
  • 9. Non-vanishing of the descent II
  • 9.1. The case HA = Sp4n+2(A)
  • 9.2. The case H = SO4n+1
  • 9.3. Whittaker coefficients of the descent corresponding to Gelfand Graev coefficients: the unipotent group and its character; h{{V) $$$ S04n+1
  • 9.4. Conjugation by the element fjm
  • 9.5. Exchanging roots: h(V) = S04N, U4n
  • 9.6. Nonvanishing of the Whittaker coefficient of the descent corresponding to Gelfand-Graev coefficients: h(V) = S04n, U4n
  • 9.7. Nonvanishing of the Whittaker coefficient of the descent corresponding to Gelfand-Graev coefficients: h(V) = U4n+2, So4n+3
  • 9.8. The Whittaker coefficient of the descent corresponding to Fourier-Jacobi coefficients: Ha ^ Sp4n+2(A)
  • 9.9. The nonvanishing of the Whittaker coefficient of the descent corresponding to Fourier-Jacobi coefficients: HA=Sp4n(A)Sp4n(A), U4n(A)
  • 9.10. Nonvanishing of the Whittaker coefficient of the descent corresponding to Fourier-Jacobi coefficients: h(V) = U4n+2
  • 10. Global genericity of the descent and global integrals
  • 10.1. Statement of the theorems
  • 10.2. Proof of Theorem 10.3
  • 10.3. Proof of Theorem 10.4
  • 10.4. A family of dual global integrals I
  • 10.5. A family of dual global integrals II
  • 10.6. L-functions
  • 11. Langlands (weak) functorial lift and descent
  • 11.1. The cuspidal part of the weak lift
  • 11.2. The image of the weak lift
  • 11.3. On generalized endoscopy
  • 11.4. Base change
  • 11.5. Automorphic induction
  • Bibliography
  • Index