Harmonic analysis method for nonlinear evolution equations, I /

Saved in:
Bibliographic Details
Author / Creator:Wang, Baoxiang.
Imprint:Singapore ; Hackensack, N.J. : World Scientific Pub. Co., c2011.
Description:xiv, 283 p. : ill. ; 24 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8547095
Hidden Bibliographic Details
Other authors / contributors:Huo, Zhaohui.
Guo, Zihua.
Hao, Chengchun.
ISBN:9789814360739
9814360732
Notes:Includes bibliographical references (p. 269-280) and index.

MARC

LEADER 00000cam a2200000Ia 4500
001 8547095
005 20130425142200.0
008 111019s2011 si a b 001 0 eng d
003 ICU
010 |a  2011275230 
016 7 |a 015960134  |2 Uk 
019 |a 724704186 
020 |a 9789814360739 
020 |a 9814360732 
035 |a (OCoLC)757736684  |z (OCoLC)724704186 
035 |a 8547095 
035 |a co4214458 
040 |a VA@  |b eng  |c VA@  |d BTCTA  |d YDXCP  |d SINLB  |d UKMGB  |d BWX  |d MUU  |d DEBBG  |d DLC  |d CDX 
049 |a CGUA 
082 0 4 |a 515.2433  |2 22 
084 |a SK 540  |2 rvk 
090 |a QA403  |b .H223 2011 
090 |a QA403  |b .H37 2011 
100 1 |a Wang, Baoxiang.  |0 http://id.loc.gov/authorities/names/nr94036233  |1 http://viaf.org/viaf/265981915 
245 1 0 |a Harmonic analysis method for nonlinear evolution equations, I /  |c Baoxiang Wang, Zhaohui Huo, Chengchun Hao, Zihua Guo. 
260 |a Singapore ;  |a Hackensack, N.J. :  |b World Scientific Pub. Co.,  |c c2011. 
300 |a xiv, 283 p. :  |b ill. ;  |c 24 cm. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a unmediated  |b n  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/n 
338 |a volume  |b nc  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/nc 
504 |a Includes bibliographical references (p. 269-280) and index. 
505 0 |a 1. Fourier multiplier, function space X [superscript]s [subscript]p,q -- 2. Navier-Stokes equation -- 3. Strichartz estimates for linear dispersive equations -- 4. Local and global wellposedness for nonlinear dispersive equations -- 5. The low regularity theory for the nonlinear dispersive equations -- 6. Frequency-uniform decomposition techniques -- 7. Conservations, Morawetz' estimates of nonlinear Schrödinger equations -- 8. Boltzmann equation without angular cutoff. 
650 0 |a Harmonic analysis.  |0 http://id.loc.gov/authorities/subjects/sh85058939 
650 0 |a Differential equations, Nonlinear.  |0 http://id.loc.gov/authorities/subjects/sh85037906 
650 0 |a Mathematical analysis.  |0 http://id.loc.gov/authorities/subjects/sh85082116 
650 0 7 |a Harmonische Analyse.  |0 (DE-588c)4023453-8  |2 swd 
650 0 7 |a Nichtlineare Evolutionsgleichung.  |0 (DE-588c)4221363-0  |2 swd 
650 0 7 |a Harmonische Analyse.  |0 (DE-588)4023453-8  |2 gnd 
650 0 7 |a Nichtlineare Evolutionsgleichung.  |0 (DE-588)4221363-0  |2 gnd 
650 7 |a Differential equations, Nonlinear.  |2 fast  |0 http://id.worldcat.org/fast/fst00893474 
650 7 |a Harmonic analysis.  |2 fast  |0 http://id.worldcat.org/fast/fst00951490 
650 7 |a Mathematical analysis.  |2 fast  |0 http://id.worldcat.org/fast/fst01012068 
700 1 |a Huo, Zhaohui. 
700 1 |a Guo, Zihua. 
700 1 |a Hao, Chengchun. 
903 |a HeVa 
929 |a cat 
999 f f |i 9fcbc69e-5922-5555-93c5-c76195725b9d  |s d3d7d251-3bce-5011-a1cb-a34a7ce56aa9 
928 |t Library of Congress classification  |a QA403.H37 2011  |l Eck  |c Eck-Eck  |i 1132099 
927 |t Library of Congress classification  |a QA403.H37 2011  |l Eck  |c Eck-Eck  |b 104472404  |i 8999203