From genes to genomes : concepts and applications of DNA technology /
Saved in:
Author / Creator: | Dale, Jeremy (Jeremy W.) |
---|---|
Edition: | 3rd ed. |
Imprint: | Chichester, West Sussex : John Wiley & Sons, 2012. |
Description: | xiv, 386 p. : ill. ; 26 cm. |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/8547101 |
Table of Contents:
- Preface xiii
- 1. From Genes to Genomes
- 1.1. Introduction
- 1.2. Basic molecular biology
- 1.2.1. The DNA backbone
- 1.2.2. The base pairs
- 1.2.3. RNA structure
- 1.2.4. Nucleic acid synthesis
- 1.2.5. Coiling and supercoilin
- 1.3. What is a gene?
- 1.4. Information flow: gene expression
- 1.4.1. Transcription
- 1.4.2. Translation
- 1.5. Gene structure and organisation
- 1.5.1. Operons
- 1.5.2. Exons and introns
- 1.6. Refinements of the model
- 2. How to Clone a Gene
- 2.1. What is cloning?
- 2.2. Overview of the procedures
- 2.3. Extraction and purification of nucleic acids
- 2.3.1. Breaking up cells and tissues
- 2.3.2. Alkaline denaturation
- 2.3.3. Column purification
- 2.4. Detection and quantitation of nucleic acids
- 2.5. Gel electrophoresis
- 2.5.1. Analytical gel electrophoresis
- 2.5.2. Preparative gel electrophoresis
- 2.6. Restriction endonucleases
- 2.6.1. Specificity
- 2.6.2. Sticky and blunt ends
- 2.7. Ligation
- 2.7.1. Optimising ligation conditions
- 2.7.2. Preventing unwanted ligation: alkaline phosphatase and double digests
- 2.7.3. Other ways of joining DNA fragments
- 2.8. Modification of restriction fragment ends
- 2.8.1. Linkers and adaptors
- 2.8.2. Homopolymer tailing
- 2.9. Plasmid vectors
- 2.9.1. Plasmid replication
- 2.9.2. Cloning sites
- 2.9.3. Selectable markers
- 2.9.4. Insertional inactivation
- 2.9.5. Transformation
- 2.10. Vectors based on the lambda bacteriophage
- 2.10.1. Lambda biology
- 2.10.2. In vitro packaging
- 2.10.3. Insertion vectors
- 2.10.4. Replacement vectors
- 2.11. Cosmids
- 2.12. Supervectors: YACs and BACs
- 2.13. Summary
- 3. Genomic and cDNA Libraries
- 3.1. Genomic libraries
- 3.1.1. Partial digests
- 3.1.2. Choice of vectors
- 3.1.3. Construction and evaluation of a genomic library
- 3.2. Growing and storing libraries
- 3.3. cDNA libraries
- 3.3.1. Isolation of mRNA
- 3.3.2. cDNA synthesis
- 3.3.3. Bacterial cDNA
- 3.4. Screening libraries with gene probes
- 3.4.1. Hybridization
- 3.4.2. Labelling probes
- 3.4.3. Steps in a hybridization experiment
- 3.4.4. Screening procedure
- 3.4.5. Probe selection and generation
- 3.5. Screening expression libraries with antibodies
- 3.6. Characterization of plasmid clones
- 3.6.1. Southern blots
- 3.6.2. PCR and sequence analysis
- 4. Polymerase Chain Reaction (PCR)
- 4.1. The PCR reaction
- 4.2. PCR in practice
- 4.2.1. Optimisation of the PCR reaction
- 4.2.2. Primer design
- 4.2.3. Analysis of PCR products
- 4.2.4. Contamination
- 4.3. Cloning PCR products
- 4.4. Long-range PCR
- 4.5. Reverse-transcription PCR
- 4.6. Quantitative and real-time PCR
- 4.6.1. SYBR Green
- 4.6.2. TaqMan
- 4.6.3. Molecular beacons
- 4.7. Applications of PCR
- 4.7.1. Probes and other modified products
- 4.7.2. PCR cloning strategies
- 4.7.3. Analysis of recombinant clones and rare events
- 4.7.4. Diagnostic applications
- 5. Sequencing a Cloned Gene
- 5.1. DNA sequencing
- 5.1.1. Principles of DNA sequencing
- 5.1.2. Automated sequencing
- 5.1.3. Extending the sequence
- 5.1.4. Shotgun sequencing; contig assembly
- 5.2. Databank entries and annotation
- 5.3. Sequence analysis
- 5.3.1. Identification of coding region
- 5.3.2. Expression signals
- 5.4. Sequence comparisons
- 5.4.1. DNA sequences
- 5.4.2. Protein sequence comparisons
- 5.4.3. Sequence alignments: Clustal
- 5.5. Protein structure
- 5.5.1. Structure predictions
- 5.5.2. Protein motifs and domains
- 5.6. Confirming gene function
- 5.6.1. Allelic replacement and gene knockouts
- 5.6.2. Complementation
- 6. Analysis of Gene Expression
- 6.1. Analysing transcription
- 6.1.1. Northern blots
- 6.1.2. Reverse transcription-PCR
- 6.1.3. In situ hybridization
- 6.2. Methods for studying the promoter
- 6.2.1. Locating the promoter
- 6.2.2. Reporter genes
- 6.3. Regulatory elements and DNA-binding proteins
- 6.3.1. Yeast one-hybrid assays
- 6.3.2. DNase I footprinting
- 6.3.3. Gel retardation assays
- 6.3.4. Chromatin immunoprecipitation (ChIP)
- 6.4. Translational analysis
- 6.4.1. Western blots
- 6.4.2. Immunocytochemistry and immunohistochemistry
- 7. Products from Native and Manipulated Cloned Genes
- 7.1. Factors affecting expression of cloned genes
- 7.1.1. Transcription
- 7.1.2. Translation initiation
- 7.1.3. Codon usage
- 7.1.4. Nature of the protein product
- 7.2. Expression of cloned genes in bacteria
- 7.2.1. Transcriptional fusions
- 7.2.2. Stability: conditional expression
- 7.2.3. Expression of lethal genes
- 7.2.4. Translational fusions
- 7.3. Yeast systems
- 7.3.1. Cloning vectors for yeasts
- 7.3.2. Yeast expression systems
- 7.4. Expression in insect cells: baculovirus systems
- 7.5. Mammalian cells
- 7.5.1. Cloning vectors for mammalian cells
- 7.5.2. Expression in mammalian cells
- 7.6. Adding tags and signals
- 7.6.1. Tagged proteins
- 7.6.2. Secretion signals
- 7.7. In vitro mutagenesis
- 7.7.1. Site-directed mutagenesis
- 7.7.2. Synthetic genes
- 7.7.3. Assembly PCR
- 7.7.4. Synthetic genomes
- 7.7.5. Protein engineering
- 7.8. Vaccines
- 7.8.1. Subunit vaccines
- 7.8.2. DNA vaccines
- 8. Genomic Analysis
- 8.1. Overview of genome sequencing
- 8.1.1. Strategies
- 8.2. Next generation sequencing (NGS)
- 8.2.1. Pyrosequencing (454)
- 8.2.2. SOLiD sequencing (Applied Biosystems)
- 8.2.3. Bridge amplification sequencing (Solexa/Ilumina)
- 8.2.4. Other technologies
- 8.3. De novo sequence assembly
- 8.3.1. Repetitive elements and gaps
- 8.4. Analysis and annotation
- 8.4.1. Identification of ORFs
- 8.4.2. Identification of the function of genes and their products
- 8.4.3. Other features of nucleic acid sequences
- 8.5. Comparing genomes
- 8.5.1. BLAST
- 8.5.2. Synteny
- 8.6. Genome browsers
- 8.7. Relating genes and functions: genetic and physical maps
- 8.7.1. Linkage analysis
- 8.7.2. Ordered libraries and chromosome walking
- 8.8. Transposon mutagenesis and other screening techniques
- 8.8.1. Transposition in bacteria
- 8.8.2. Transposition in Drosophila
- 8.8.3. Transposition in other organisms
- 8.8.4. Signature-tagged mutagenesis
- 8.9. Gene knockouts, gene knockdowns and gene silencing
- 8.10. Metagenomics
- 8.11. Conclusion
- 9. Analysis of Genetic Variation
- 9.1. Single nucleotide polymorphisms
- 9.1.1. Direct sequencing
- 9.1.2. SNP arrays
- 9.2. Larger scale variations
- 9.2.1. Microarrays and indels
- 9.3. Other methods for studying variation
- 9.3.1. Genomic Southern blot analysis: restriction fragment length polymorphisms (RFLPs)
- 9.3.2. VNTR and microsatellites
- 9.3.3. Pulsed-field gel electrophoresis
- 9.4. Human genetic variation: relating phenotype to genotype
- 9.4.1. Linkage analysis
- 9.4.2. Genome-wide association studies (GWAS)
- 9.4.3. Database resources
- 9.4.4. Genetic diagnosis
- 9.5. Molecular phylogeny
- 9.5.1. Methods for constructing trees
- 10. Post-Genomic Analysis
- 10.1. Analysing transcription: transcriptomes
- 10.1.1. Differential screening
- 10.1.2. Other methods: transposons and reporters
- 10.2. Array-based methods
- 10.2.1. Expressed sequence tag (EST) arrays
- 10.2.2. PCR product arrays
- 10.2.3. Synthetic oligonucleotide arrays
- 10.2.4. Important factors in array hybridization
- 10.3. Transcriptome sequencing
- 10.4. Translational analysis: proteomics
- 10.4.1. Two-dimensional electrophoresis
- 10.4.2. Mass spectrometry
- 10.5. Post-translational analysis: protein interactions
- 10.5.1. Two-hybrid screening
- 10.5.2. Phage display libraries
- 10.6. Epigenetics
- 10.7. Integrative studies: systems biology
- 10.7.1. Metabolomic analysis
- 10.7.2. Pathway analysis and systems biology
- 11. Modifying Organisms: Transgenics
- 11.1. Transgenesis and cloning
- 11.1.1. Common species used for transgenesis
- 11.1.2. Control of transgene expression
- 11.2. Animal transgenesis
- 11.2.1. Basic methods
- 11.2.2. Direct injection
- 11.2.3. Retroviral vectors
- 11.2.4. Embryonic stem cell technology
- 11.2.5. Gene knockouts
- 11.2.6. Gene knock-down technology: RNA interference
- 11.2.7. Gene knock-in technology
- 11.3. Applications of transgenic animals
- 11.4. Disease prevention and treatment
- 11.4.1. Live vaccine production: modification of bacteria and viruses
- 11.4.2. Gene therapy
- 11.4.3. Viral vectors for gene therapy
- 11.5. Transgenic plants and their applications
- 11.5.1. Introducing foreign genes
- 11.5.2. Gene subtraction
- 11.5.3. Applications
- 11.6. Transgenics: a coda 353 Glossary
- Bibliography
- Index