Measurement error models /

Saved in:
Bibliographic Details
Author / Creator:Fuller, Wayne A.
Imprint:New York : Wiley, c1987.
Description:xxiii, 440 p. ; 24 cm.
Language:English
Series:Wiley series in probability and mathematical statistics. Probability and mathematical statistics
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/865060
Hidden Bibliographic Details
ISBN:0471861871 : $45.00 (est.)
Notes:Includes indexes.
Bibliography: p. 409-432.
Table of Contents:
  • List of Examples
  • List of Principal Results
  • List of Figures
  • 1. A Single Explanatory Variable
  • 1.1. Introduction
  • 1.1.1. Ordinary Least Squares and Measurement Error
  • 1.1.2. Estimation with Known Reliability Ratio
  • 1.1.3. Identification
  • 1.2. Measurement Variance Known
  • 1.2.1. Introduction and Estimators
  • 1.2.2. Sampling Properties of the Estimators
  • 1.2.3. Estimation of True x Values
  • 1.2.4. Model Checks
  • 1.3. Ratio of Measurement Variances Known
  • 1.3.1. Introduction
  • 1.3.2. Method of Moments Estimators
  • 1.3.3. Least Squares Estimation
  • 1.3.4. Tests of Hypotheses for the Slope
  • 1.4. Instrumental Variable Estimation
  • 1.5. Factor Analysis
  • 1.6. Other Methods and Models
  • 1.6.1. Distributional Knowledge
  • 1.6.2. The Method of Grouping
  • 1.6.3. Measurement Error and Prediction
  • 1.6.4. Fixed Observed X
  • Appendix 1.A. Large Sample Approximations
  • Appendix 1.B. Moments of the Normal Distribution
  • Appendix 1.C. Central Limit Theorems for Sample Moments
  • Appendix 1.D. Notes on Notation
  • 2. Vector Explanatory Variables
  • 2.1. Bounds for Coefficients
  • 2.2. The Model with an Error in the Equation
  • 2.2.1. Estimation of Slope Parameters
  • 2.2.2. Estimation of True Values
  • 2.2.3. Higher-Order Approximations for Residuals and True Values
  • 2.3. The Model with No Error in the Equation
  • 2.3.1. The Functional Model
  • 2.3.2. The Structural Model
  • 2.3.3. Higher-Order Approximations for Residuals and True Values
  • 2.4. Instrumental Variable Estimation
  • 2.5. Modifications to Improve Moment Properties
  • 2.5.1. An Error in the Equation
  • 2.5.2. No Error in the Equation
  • 2.5.3. Calibration
  • Appendix 2.A. Language Evaluation Data
  • 3. Extensions of the Single Relation Model
  • 3.1. Nonnormal Errors and Unequal Error Variances
  • 3.1.1. Introduction and Estimators
  • 3.1.2. Models with an Error in the Equation
  • 3.1.3. Reliability Ratios Known
  • 3.1.4. Error Variance Functionally Related to Observations
  • 3.1.5. The Quadratic Model
  • 3.1.6. Maximum Likelihood Estimation for Known Error Covariance Matrices
  • 3.2. Nonlinear Models with No Error in the Equation
  • 3.2.1. Introduction
  • 3.2.2. Models Linear in x
  • 3.2.3. Models Nonlinear in x
  • 3.2.4. Modifications of the Maximum Likelihood Estimator
  • 3.3. The Nonlinear Model with an Error in the Equation
  • 3.3.1. The Structural Model
  • 3.3.2. General Explanatory Variables
  • 3.4. Measurement Error Correlated with True Value
  • 3.4.1. Introduction and Estimators
  • 3.4.2. Measurement Error Models for Multinomial Random Variables
  • Appendix 3.A. Data for Examples
  • 4. Multivariate Models
  • 4.1. The Classical Multivariate Model
  • 4.1.1. Maximum Likelihood Estimation
  • 4.1.2. Properties of Estimators
  • 4.2. Least Squares Estimation of the Parameters of a Covariance Matrix
  • 4.2.1. Least Squares Estimation
  • 4.2.2. Relationships between Least Squares and Maximum Likelihood
  • 4.2.3. Least Squares Estimation for the Multivariate Functional Model
  • 4.3. Factor Analysis
  • 4.3.1. Introduction and Model
  • 4.3.2. Maximum Likelihood Estimation
  • 4.3.3. Limiting Distribution of Factor Estimators
  • Appendix 4.A. Matrix-Vector Operations
  • Appendix 4.B. Properties of Least Squares and Maximum Likelihood Estimators
  • Appendix 4.C. Maximum Likelihood Estimation for Singular Measurement Covariance
  • Bibliography
  • Author Index
  • Subject Index