Identification of nonlinear physiological systems /
Saved in:
Author / Creator: | Westwick, David T. |
---|---|
Imprint: | [Piscataway, N.J.?] : IEEE Press ; Hoboken, NJ : Wiley-Interscience, c2003. |
Description: | 1 online resource (xii, 261 p.) : ill. |
Language: | English |
Series: | IEEE Press series on biomedical engineering IEEE Press series in biomedical engineering. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/8680103 |
Table of Contents:
- Preface
- 1. Introduction
- 1.1. Signals
- 1.1.1. Domain and Range
- 1.1.2. Deterministic and Stochastic Signals
- 1.1.3. Stationary and Ergodic Signals
- 1.2. Systems and Models
- 1.2.1. Model Structure and Parameters
- 1.2.2. Static and Dynamic Systems
- 1.2.3. Linear and Nonlinear Systems
- 1.2.4. Time-Invariant and Time-Varying Systems
- 1.2.5. Deterministic and Stochastic Systems
- 1.3. System Modeling
- 1.4. System Identification
- 1.4.1. Types of System Identification Problems
- 1.4.2. Applications of System Identification
- 1.5. How Common are Nonlinear Systems?
- 2. Background
- 2.1. Vectors and Matrices
- 2.2. Gaussian Random Variables
- 2.2.1. Products of Gaussian Variables
- 2.3. Correlation Functions
- 2.3.1. Autocorrelation Functions
- 2.3.2. Cross-Correlation Functions
- 2.3.3. Effects of Noise
- 2.3.4. Estimates of Correlation Functions
- 2.3.5. Frequency Domain Expressions
- 2.3.6. Applications
- 2.3.7. Higher-Order Correlation Functions
- 2.4. Mean-Square Parameter Estimation
- 2.4.1. Linear Least-Squares Regression
- 2.4.2. Properties of Estimates
- 2.5. Polynomials
- 2.5.1. Power Series
- 2.5.2. Orthogonal Polynomials
- 2.5.3. Hermite Polynomials
- 2.5.4. Tchebyshev Polynomials
- 2.5.5. Multiple-Variable Polynomials
- 2.6. Notes and References
- 2.7. Problems
- 2.8. Computer Exercises
- 3. Models of Linear Systems
- 3.1. Linear Systems
- 3.2. Nonparametric Models
- 3.2.1. Time Domain Models
- 3.2.2. Frequency Domain Models
- 3.3. Parametric Models
- 3.3.1. Parametric Frequency Domain Models
- 3.3.2. Discrete-Time Parametric Models
- 3.4. State-Space Models
- 3.4.1. Example: Human Ankle Compliance--Discrete-Time, State-Space Model
- 3.5. Notes and References
- 3.6. Theoretical Problems
- 3.7. Computer Exercises
- 4. Models of Nonlinear Systems
- 4.1. The Volterra Series
- 4.1.1. The Finite Volterra Series
- 4.1.2. Multiple-Input Systems
- 4.1.3. Polynomial Representation
- 4.1.4. Convergence Issues
- 4.2. The Wiener Series
- 4.2.1. Orthogonal Expansion of the Volterra Series
- 4.2.2. Relation Between the Volterra and Wiener Series
- 4.2.3. Example: Peripheral Auditory Model--Wiener Kernels
- 4.2.4. Nonwhite Inputs
- 4.3. Simple Block Structures
- 4.3.1. The Wiener Model
- 4.3.2. The Hammerstein Model
- 4.3.3. Sandwich or Wiener-Hammerstein Models
- 4.3.4. NLN Cascades
- 4.3.5. Multiple-Input Multiple-Output Block Structured Models
- 4.4. Parallel Cascades
- 4.4.1. Approximation Issues
- 4.5. The Wiener-Bose Model
- 4.5.1. Similarity Transformations and Uniqueness
- 4.5.2. Approximation Issues
- 4.5.3. Volterra Kernels of the Wiener-Bose Model
- 4.5.4. Wiener Kernels of the Wiener-Bose Model
- 4.5.5. Relationship to the Parallel Cascade Model
- 4.6. Notes and References
- 4.7. Theoretical Problems
- 4.8. Computer Exercises
- 5. Identification of Linear Systems
- 5.1. Introduction
- 5.1.1. Example: Identification of Human Joint Compliance
- 5.1.2. Model Evaluation
- 5.2. Nonparametric Time Domain Models
- 5.2.1. Direct Estimation
- 5.2.2. Least-Squares Regression
- 5.2.3. Correlation-Based Methods
- 5.3. Frequency Response Estimation
- 5.3.1. Sinusoidal Frequency Response Testing
- 5.3.2. Stochastic Frequency Response Testing
- 5.3.3. Coherence Functions
- 5.4. Parametric Methods
- 5.4.1. Regression
- 5.4.2. Instrumental Variables
- 5.4.3. Nonlinear Optimization
- 5.5. Notes and References
- 5.6. Computer Exercises
- 6. Correlation-Based Methods
- 6.1. Methods for Functional Expansions
- 6.1.1. Lee-Schetzen Cross-Correlation
- 6.1.2. Colored Inputs
- 6.1.3. Frequency Domain Approaches
- 6.2. Block-Structured Models
- 6.2.1. Wiener Systems
- 6.2.2. Hammerstein Models
- 6.2.3. LNL Systems
- 6.3. Problems
- 6.4. Computer Exercises
- 7. Explicit Least-Squares Methods
- 7.1. Introduction
- 7.2. The Orthogonal Algorithms
- 7.2.1. The Orthogonal Algorithm
- 7.2.2. The Fast Orthogonal Algorithm
- 7.2.3. Variance of Kernel Estimates
- 7.2.4. Example: Fast Orthogonal Algorithm Applied to Simulated Fly Retina Data
- 7.2.5. Application: Dynamics of the Cockroach Tactile Spine
- 7.3. Expansion Bases
- 7.3.1. The Basis Expansion Algorithm
- 7.3.2. The Laguerre Expansion
- 7.3.3. Limits on [alpha]
- 7.3.4. Choice of [alpha] and P
- 7.3.5. The Laguerre Expansion Technique
- 7.3.6. Computational Requirements
- 7.3.7. Variance of Laguerre Kernel Estimates
- 7.3.8. Example: Laguerre Expansion Kernels of the Fly Retina Model
- 7.4. Principal Dynamic Modes
- 7.4.1. Example: Principal Dynamic Modes of the Fly Retina Model
- 7.4.2. Application: Cockroach Tactile Spine
- 7.5. Problems
- 7.6. Computer Exercises
- 8. Iterative Least-Squares Methods
- 8.1. Optimization Methods
- 8.1.1. Gradient Descent Methods
- 8.1.2. Identification of Block-Structured Models
- 8.1.3. Second-Order Optimization Methods
- 8.1.4. Jacobians for Other Block Structures
- 8.1.5. Optimization Methods for Parallel Cascade Models
- 8.1.6. Example: Using a Separable Volterra Network
- 8.2. Parallel Cascade Methods
- 8.2.1. Parameterization Issues
- 8.2.2. Testing Paths for Significance
- 8.2.3. Choosing the Linear Elements
- 8.2.4. Parallel Wiener Cascade Algorithm
- 8.2.5. Longer Cascades
- 8.2.6. Example: Parallel Cascade Identification
- 8.3. Application: Visual Processing in the Light-Adapted Fly Retina
- 8.4. Problems
- 8.5. Computer Exercises
- References
- Index
- IEEE Press Series in Biomedical Engineering