Fusion methods for time-series classification /

Saved in:
Bibliographic Details
Author / Creator:Buza, Krisztian Antal.
Imprint:Frankfurt am Main ; New York : Peter Lang, c2011.
Description:xiii, 144 p. : ill. ; 22 cm.
Language:English
Series:Informationstechnologie und Ökonomie, 1616-086x ; Bd. 45
Informationstechnologie und Ökonomie ; Bd. 45.
Subject:
Format: Dissertations Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8682100
Hidden Bibliographic Details
ISBN:9783631630853
3631630859
Notes:Originally presented as the author's dissertation--Universität Hildesheim, 2011.
Includes bibliographical references (p. [127]-144).
Summary:"Time-series classification is the common theoretical background of many recognition tasks performed by computers, such as handwriting recognition, speech recognition or detection of abnormalities in electrocardiograph signals. In this book, the state-of-the-art in time-series classification is surveyed and five new techniques are presented. Four out of them aim at making the recognition more accurate, while the proposed instance-selection algorithm speeds up time-series classification. Besides time-series classification tasks, potential applications of the proposed techniques include problems from various domains, e.g. web science or medicine"--Back cover.

MARC

LEADER 00000cam a2200000Ia 4500
001 8682100
003 ICU
005 20121101091600.0
008 111208s2011 gw a bm 000 0 eng d
020 |a 9783631630853 
020 |a 3631630859 
035 |a (OCoLC)768169079 
040 |a BTCTA  |b eng  |c BTCTA  |d YDXCP  |d BWK  |d CUV  |d RRP 
049 |a CGUA 
090 |a QA280  |b .B89 2011 
100 1 |a Buza, Krisztian Antal. 
245 1 0 |a Fusion methods for time-series classification /  |c Krisztian Antal Buza. 
260 |a Frankfurt am Main ;  |a New York :  |b Peter Lang,  |c c2011. 
300 |a xiii, 144 p. :  |b ill. ;  |c 22 cm. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a unmediated  |b n  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/n 
338 |a volume  |b nc  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/nc 
490 1 |a Informationstechnologie und Ökonomie,  |x 1616-086x ;  |v Bd. 45 
502 |a Originally presented as the author's dissertation--Universität Hildesheim, 2011. 
504 |a Includes bibliographical references (p. [127]-144). 
505 0 |a Individual quality estimation -- Instance selection -- Fusion of distance measures -- The GRAMOFON ensemble framework -- Motifs for time-series classification -- Outlook: some related applications. 
520 0 |a "Time-series classification is the common theoretical background of many recognition tasks performed by computers, such as handwriting recognition, speech recognition or detection of abnormalities in electrocardiograph signals. In this book, the state-of-the-art in time-series classification is surveyed and five new techniques are presented. Four out of them aim at making the recognition more accurate, while the proposed instance-selection algorithm speeds up time-series classification. Besides time-series classification tasks, potential applications of the proposed techniques include problems from various domains, e.g. web science or medicine"--Back cover. 
650 0 |a Time-series analysis.  |0 http://id.loc.gov/authorities/subjects/sh85135430 
650 7 |a Time-series analysis.  |2 fast  |0 http://id.worldcat.org/fast/fst01151190 
830 0 |a Informationstechnologie und Ökonomie ;  |v Bd. 45. 
903 |a HeVa 
929 |a cat 
999 f f |i 65100445-20af-53b6-9512-d72f050d736e  |s f85c111f-75b7-5baf-adf9-2b9273756418 
928 |t Library of Congress classification  |a QA280 .B89 2011  |l JCL  |c JCL-Sci  |i 1133166 
927 |t Library of Congress classification  |a QA280 .B89 2011  |l JCL  |c JCL-Sci  |e WAGN  |e CRERAR  |b 104524617  |i 9019308