The vestibular system : a sixth sense /

Saved in:
Bibliographic Details
Imprint:New York : Oxford University Press, c2012.
Description:xiii, 541 p. : ill. (some col.) ; 26 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8688259
Hidden Bibliographic Details
Other authors / contributors:Goldberg, Jay M.
ISBN:9780195167085 (hardcover : alk. paper)
0195167082 (hardcover : alk. paper)
Notes:Includes bibliographical references and index.
Table of Contents:
  • Part I. Introduction
  • 1. The Vestibular System in Everyday Life
  • 1.1. Overview of the Vestibular System
  • 1.2. Visual Acuity and the Vestibulo-Ocular Reflex
  • 1.3. Air-Righting Reflex in the Cat
  • 1.4. Post-Rotational Reactions
  • 1.5. Positional Alcohol Nystagmus
  • 1.6. Motion Sickness
  • 1.7. Vection Illusions
  • 1.8. The Subjective Visual Vertical
  • 1.9. Adaptive Plasticity
  • 1.10. Path Finding and Spatial Orientation
  • 1.11. Postural Control
  • 1.12. Summary
  • 1.13. Selected Readings
  • Part II. Peripheral Vestibular System
  • 2. Structure of the Vestibular Labyrinth
  • 2.1. Gross and Microscopic Anatomy
  • 2.2. Fine Structure of the Sensory Regions
  • Hair Cells
  • Supporting Cells
  • Transitional Regions
  • 2.3. Regional Variations in Cellular Architecture and Afferent Innervation
  • Crista Ampullaris
  • Utricular Macula
  • Saccular Macula
  • 2.4. Efferent Innervation
  • 2.5. Summary
  • 2.6. Selected Readings
  • 3. Hair Cell Transduction
  • 3.1. Mechanoelectric Transduction
  • 3.2. Basolateral Currents
  • 3.3. Neurotransmitter Release and Presynaptic Calcium Channels
  • Calcium Channels
  • Neurotransmitter Release
  • 3.4. Postsynaptic Mechanisms
  • 3.5. Synaptic Transmission Involving Type I Hair Cells
  • 3.6. Spike Encoding
  • 3.7. Efferent Neurotransmission
  • 3.8. Summary
  • 3.9. Selected Readings
  • 4. Physiology of the Vestibular Organs
  • 4.1. General Features of the Vestibular Organs
  • Vestibular Organs Are Inertial Sensors
  • Resting Discharge
  • Discharge Regularity
  • Information Transmission
  • 4.2. Semicircular Canals
  • Directional Properties
  • Macromechanics and the Torsion-Pendulum Model
  • Interspecies Variations and Canal Dimensions
  • Afferent Response Dynamics
  • Variations in Gain and Phase
  • Afferent Morphology and Physiology
  • Dynamic Range of Afferent Discharge
  • 4.3. Otolidi Organs
  • Directional Properties
  • Macromechanics and the Otoconial Membrane
  • Afferent Response Dynamics
  • Dynamic Range of Afferent Discharge
  • Variations in Gain and Phase
  • Afferent Morphology and Physiology
  • 4.4. Summary
  • 4.5. Selected Readings
  • 5. The Efferent Vestibular System
  • 5.1. Comparative Anatomy of Central Efferent Pathways
  • 5.2. Responses of Afferents to Electrical Activation of the EVS
  • Mammals
  • Non-Mammals
  • 5.3. Responses of Efferents to Natural Stimulation
  • 5.4. Efferent-Mediated Responses of Afferents
  • 5.5. Possible Functions of Efferents in Mammals
  • 5.6. Summary
  • 5.7. Selected Readings
  • Part III. Central Vestibular System
  • 6. Neuroanatomy of Central Vestibular Pathways
  • 6.1. Introduction
  • 6.2. The Vestibular Nuclei: Subdivisions and Anatomical Organization
  • Medial Vestibular Nucleus
  • Lateral Vestibular Nucleus
  • Superior Vestibular Nucleus
  • Descending Vestibular Nucleus
  • y Group
  • Interstitial Nucleus of the Vestibular Nerve
  • Associated Cell Groups
  • Projection and Intrinsic Neurons
  • Connections with the Ipsilateral Vestibular Nerve
  • Commissural Pathways
  • 6.3. Vestibulo-Ocular and Optokinetic Systems
  • Semicircular Canal Projections to Oculomotor Neurons
  • Otolith Projections to Oculomotor Neurons
  • Nucleus Propositus Hypoglossi
  • Interstitial Nucleus of Cajal
  • Reticular Formation
  • Optokinetic Padiways
  • 6.4. Vestibulospinal Systems
  • Medial Vestibulospinal Tract
  • Lateral Vestibulospinal Tract
  • Vestibulo-Ocular Cervical Padiways
  • Odier Vestibulospinal Tracts
  • Reticulospinal Tracts
  • Spinal Projections to the Vestibular Nuclei
  • 6.5. Vestibulocerebellar Relations
  • Functional Organization
  • Basic Circuitry
  • Vestibular Projections to the Cerebellum
  • Prepositus Nucleus
  • Projections from the Deep Cerebellar Nuclei to the Vestibular Nuclei
  • Projections from the Cerebellar Cortex to the Vestibular Nuclei
  • Cerebellar Cortical Modules
  • Lateral Reticular Nucleus
  • Vestibulo-Paramedian Tract Projections
  • 6.6. Vestibulo-Autonomic Connections
  • 6.7. Vestibular Connections with the Neocortex
  • 6.8. Pathways Involving the Hippocampal Formation
  • 6.9. Summary
  • 6.10. Selected Readings
  • 6.11. List of Abbreviations
  • 7. Synaptic Mechanisms in the Vestibular Nuclei
  • 7.1. Historical Perspective
  • 7.2. Basic Circuitry of the Vestibular Nuclei
  • Ipsilateral Vestibular Nerve Inputs
  • Commissural Connections
  • 7.3. Neurotransmitters in the Vestibular Nuclei
  • Transmission between the Vestibular Nerve and Secondary Neurons
  • Transmission within the Vestibular Nuclei
  • Output Pathways of the Vestibular Nuclei
  • 7.4. Properties of Individual Neurons
  • Resting Discharge
  • In vitro Electrophysiology
  • 7.5. Central Projections of Regular and Irregular Afferents
  • Intracellular Labeling of Vestibular-Nerve Fibers
  • Electrophysiological Studies
  • Functional Ablation of Irregular Afferents
  • 7.6. Convergence from Separate Vestibular Organs
  • Canal-Canal Convergence
  • Otolith-Otolith Convergence
  • Spatio-Temporal Convergence
  • Canal-Otolith Convergence
  • 7.7. Convergence from Somatosensory Receptors
  • Input from Neck Afferents
  • Input from Limb Afferents
  • Neck-Vestibular Convergence in the Vestibular Nuclei
  • 7.8. Summary
  • 7.9. Selected Readings
  • Part IV. Vestibulo-Ocular and Vestibulospinal Mechanisms
  • 8. An Oculomotor Tutorial
  • 8.1. Overview and Classification of Eye Movement Types
  • 8.2. Ocular Structure and Functional Implications
  • The Extraocular Eye Muscles
  • Mechanics of the Oculomotor Plant
  • Oculomotor Motoneuron Discharge
  • Plant Mechanics and Premotor Control
  • 8.3. Gaze Redirection
  • Saccades
  • Smooth Pursuit
  • Vergence
  • 8.4. Gaze Stabilization
  • Vestibulo-Ocular Reflexes
  • Optokinetic System
  • 8.5. Interactions between Eye and Head Movements
  • 8.6. Summary
  • 8.7. Selected Readings
  • 9. Vestibulo-Ocular Reflexes
  • 9.1. Semicircular-Canal-Related Angular VOR
  • General Properties of the Canal-Related AVOR
  • AVOR during High-Frequency Rotations
  • AVOR at Low Frequencies: Velocity Storage
  • AVOR-Visual Interactions: The Optokinetic System
  • AVOR in Three Dimensions
  • 9.2. Otolith-Ocular Reflexes
  • Tilt VOR
  • Otolith Influences on the AVOR during Off-Vertical Axis Rotations
  • Otolith Influences on the AVOR during Canal-Otolith Conflict
  • Translational VOR (TVOR)
  • Optic Flow during Translation
  • TVOR Properties
  • Visual Mechanisms for Short Latency Visual Compensation during Translation
  • Distinguishing Tilts from Translations
  • Differences between the AVOR and the TVOR
  • Comparative Adaptations
  • 9.3. Summary
  • 9.4. Selected Readings
  • 10. The Vestibulospinal System and Postural Control
  • 10.1. Reflexes Versus Multisensory Strategies
  • 10.2. Multisensory Strategies
  • 10.3. Vestibular Reflexes: General Considerations
  • 10.4. Vestibulocollic Reflexes (VCR)
  • The Angular VCR
  • The Linear VCR Evoked by Translation and Tilts
  • The Cervicocollic Reflex
  • 10.5. Control Systems Analysis of the Head-Neck Plant
  • Head Plant
  • Vestibulocollic Reflex
  • Cervicocollic Reflex
  • Reflex Interactions
  • Use of Control Systems Models
  • 10.6. Vestibulospinal and Neck Reflexes Acting on the Limbs
  • Spatial and Temporal Properties of the Reflexes
  • Afferent Origin of the Reflexes
  • Neural Substrate of the Reflexes
  • Vestibulospinal Actions on Hindlimb Motoneurons
  • Vestibulospinal Actions on Forelimb Motoneurons
  • Actions on Fusimotor Neurons
  • Tonic Neck Reflexes
  • 10.7. Summary
  • 10.8. Selected Readings
  • Part V. Signal Processing in Alert Animals
  • 11. Signal Processing in Vestibular Nuclei (Vn) of Alert Animals During Natural Behaviors
  • 11.1. Introduction
  • 11.2. Classes of Neurons in Head-Restrained, Alert Monkeys
  • Position-Vestibular-Pause (PVP) Neurons
  • Vestibular Only (VO) and Vestibular-Pause Cells
  • Eye-Head (EH) Neurons
  • Burst-Tonic (BT) Neurons
  • 11.3. Dynamics of Neuronal Responses
  • Frequency Response during Sinusoidal Rotations
  • Response Linearity
  • Velocity Storage
  • 11.4. Response to Linear Translations in Alert Head-Restrained Monkeys
  • Distinguishing Translation from Tilt
  • 11.5. Interactions with the Oculomotor Pathways that Control Pursuit Eye Movements
  • 11.6. Integration of Inputs from Vestibular and Optokinetic Pathways
  • VN Modulation during the OKR
  • Optokinetic Pathways to the VN
  • 11.7. Integration of Vestibular and Proprioceptive Inputs
  • 11.8. Differential Processing of Active Versus Passive Head Movements
  • Neuronal Responses during Active Versus Passive Head Movement
  • Mechanisms for the Differential Processing of Active Versus Passive Head Movement
  • 11.9. Vestibular Processing Depends on Current Gaze Strategy
  • Vestibular Processing during Voluntary Gaze Shifts
  • Vestibular Processing during Visual Tracking; VOR Cancellation and Eye-Head Pursuit
  • Vestibular Processing during Near Versus Far Viewing
  • 11.10. Summary
  • 11.11. Selected Readings
  • 12. The Cerebellum and the Vestibular System
  • 12.1. Overview of Signal Processing in the Cerebellum
  • The Basic Cerebellar Circuit
  • Vestibular Inputs Are Specific to Localized Regions of the Cerebellum
  • 12.2. Nodulus and Ventral Uvula
  • Mossy Fiber Inputs
  • Climbing Fiber Inputs
  • Efferent Connections
  • Neuronal Responses
  • Lesions and Function
  • 12.3. Flocculus and Ventral Paraflocculus
  • Mossy Fiber Inputs
  • Climbing Fiber Inputs
  • Efferent Projections of the Flocculus
  • Differences between the Flocculus and Ventral Paraflocculus
  • Neuronal Responses
  • Complex Spikes
  • Simple Spikes
  • Changes in Neuronal Responses following VOR Learning
  • Lesions and Function
  • Lesions Studies Emphasize the Role of the Flocculus in VOR Adaptation and Motor Learning
  • 12.4. The Vermis of the Anterior and Posterior Lobes
  • 12.5. The Deep Cerebellar Nuclei
  • Fastigial Nucleus
  • Rostral Fastigial Nucleus
  • Caudal Fastigial Nucleus
  • The Interposed Nuclei
  • Dentate Nuclei
  • 12.6. Summary
  • 12.7. Selected Readings
  • Part VI. Functional Considerations
  • 13. Learning and Compensation in the Vestibular System
  • 13.1. Motor Learning in the Vestibulo-Ocular Reflex
  • The Adaptive Capabilities of the VOR
  • Signal Flow in the VOR Network
  • Rules for the VOR and Motor Learning
  • Possible Sites of Motor Learning: Cerebellum Versus; Brain Stem
  • Evidence for Sites of Learning and Memory
  • Possible Cellular Mechanisms of Synaptic Plasticity
  • Consolidation of VOR Motor Memory
  • Generalization: Can Learning Be Applied to New Situations?
  • 13.2. Compensation for Vestibular Damage
  • Uninilateral Labyrinthectomy
  • Activity in the Vestibular Nuclei following Labyrinthectomy
  • Cellular Mechanisms of Compensation in the Vestibular Nuclei
  • The Role of the Cerebellum in Compensation
  • 13.3. Summary
  • 13.4. Selected Readings
  • 14. Cortical Representations of Vestibular Information
  • 14.1. Introduction
  • 14.2. Historical Perspective
  • 14.3. Multiple Representations of Vestibular Signals in the Cerebral Cortex
  • Visuomotor Areas in Frontal Cortex
  • Extrastriate Visual Cortex
  • Ventral Intraparietal Area
  • Parieto-Insular Vestibular Cortex, Area 2v and Area 3a
  • 14.4. Ascending Vestibular Pathways through the Thalamus
  • 14.5. Descending Cortical Information Affecting Vestibular Responsiveness in the Vestibular Nuclei
  • 14.6. Vestibular Influences in the Head-Direction Circuit of the Limbic System
  • 14.7. Summary
  • 14.8. Selected Readings
  • 15. Reference Frames for the Coding of Vestibular Signals
  • 15.1. Definitions of Coordinate Systems and Reference Frames
  • 15.2. Head- Versus Body-Centered Reference Frames: Vestibular-Neck Proprioceptive Interactions
  • 15.3. Head- Versus Eye-Centered Reference Frames for Self-Motion Perception: Vestibular-Visual Interactions in Extrastriate Visual Cortex
  • 15.4. Head- Versus World-Centered Reference Frames: Canal-Otolith Convergence for Inertial Motion Detection
  • 15.5. Computational Solution for the Two Ambiguities of Peripheral Vestibular Sensors
  • The Rotation Problem: Allocentric Coding of Angular Velocity
  • The Linear Acceleration Problem: Evidence for Segregation of Tilt and Translation
  • Tilt-Translation Exceptions
  • Neural Representations of Inertial Motion
  • Implications for Canal-Canal and Otolith-Canal Convergence
  • Multisensory Influences
  • 15.6. Summary
  • 15.7. Selected Readings
  • Part VII. Clinical Disorders
  • 16. Clinical Manifestations of Peripheral Vestibular Dysfunction
  • 16.1. Prevalence and Impact of Vestibular Disorders
  • 16.2. Diagnosis of Vestibular Disorders
  • 16.3. Planes of Individual Canals and Direction of Eye Movements
  • Benign Paroxysmal Positional Vertigo
  • Positional Alcohol Nystagmus
  • Superior Semicircular Canal Dehiscence Syndrome
  • 16.4. Recovery of the Horizontal VOR after Unilateral Labyrinthectomy
  • 16.5. Multisensory Control of Posture
  • 16.6. Disorders of Otolith Function
  • 16.7. Clinical Tests of Vestibular Function
  • Caloric Test
  • Rotational Chair Tests
  • Quantitative Evaluation of the VOR Evoked by Rapid Head Movements
  • Vestibular-Evoked Myogenic Potentials
  • 16.8. Future Directions
  • Hair-Cell Regeneration
  • Vestibular Prosthesis
  • 16.9. Summary
  • 16.10. Selected Readings
  • Index