Principles of filtration.

Saved in:
Bibliographic Details
Author / Creator:Tien, Chi.
Edition:1st ed.
Imprint:Oxford : Elsevier, 2012.
Description:xvii, 334 pages ; 25 cm
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8769273
Hidden Bibliographic Details
ISBN:9780444563668
0444563660
Table of Contents:
  • preface
  • 1. Introduction
  • Notation
  • 1.1. Filtration as a Liquid-Solid Separation Technology
  • 1.2.. Classification of Filtration Processes
  • 1.3. Laws of Filtration
  • Problem
  • References
  • Part I. Cake Filtration
  • 2. Cake Formation and Growth
  • Notation
  • 2.1. Cycles
  • 2.2. Analysis of Cake Filtration
  • Illustrative Example 2.1.
  • Illustrative Example 2.2.
  • Illustrative Example 2.3.
  • Illustrative Example 2.4.
  • 2.3. The Conventional Cake Filtration Theory
  • Illustrative Example 2.5.
  • 2.4. Expressions of Cake Filtration Performance
  • 2.5. Parabolic Law of Constant Pressure Filtration
  • Illustrative Example 2.6.
  • 2.6. Approximate Expressions of Cake Solidosity, Compressive Stress, and Pore Liquid Pressure Profiles
  • Illustrative Example 2.7.
  • 2.7. Applications of the Conventional Cake Filtration Theory
  • 2.7.1. Prediction of Cake Filtration Performance
  • Illustrative Example 2.8.
  • 2.7.2. Detemiination of Cake Properties from Experimental Filtration Data
  • Illustrative Example 2.9.
  • 2.8. Application of the Conventional Theory to Crossflow Cake Filtration
  • 2.8.1. Features of Crossflow Filtration
  • 2.8.2. A simple model of crossflow filtration
  • 2.8.3. Evaluation of ß and Prediction of Filtration Performance
  • Illustrative Example 2.10.
  • Illustrative Example 2.11.
  • Problems
  • References
  • 3. Post-Treatment Processes of Cake Filtration
  • Notation
  • 3.1. Deliquoring by Mechanical Force: Expression and Consolidation
  • 3.1.1. Onset of Consolidation
  • Illustrative Example 3.1.
  • 3.1.2. Consolidation Calculation
  • 3.1.3. Approximation Solution of Consolidation
  • 3.1.4. Empirical Equations Describing Consolidation/De-watering Performance
  • Illustrative Example 3.2.
  • Illustrative Example 3.3
  • 3.2. Deliquoring by Suction or Blowing
  • Illustrative Example 3.4.
  • 3.3. Washing of Filter Cakes
  • 3.3.1. Representation of Cake-Washing Results
  • 3.3.2. Empirical Expression of F (or R) vs. w
  • Illustrative Example 3.5.
  • 3.3.3. Diffusion-Dispersion Model of Cake Washing
  • Illustrative Example 3.6.
  • Illustrative Example 3.7.
  • 3.3.4. Re-slurrying Cake
  • Problems
  • References
  • 4. Fabric Filtration of Gas-Solid Mixtures
  • Notation
  • 4.1. Dust Cakes of Fabric Filtration vs. Cakes Formed from Liquid/Solid Suspensions
  • 4.2. of Fabric Filtration
  • Illustrative Example 4.1.
  • 4.3. Dust Cake Structure and Properties
  • Illustrative Example 4.2.
  • 4.4. Filter Bag Cleaning
  • 4.4.1. Cleaning by Shaking
  • 4.4.2. Cleaning by Reverse Flow
  • 4.4.3. Cleaning by Pulse-Jet
  • Illustrative Example 4.3.
  • 4.5. Fabric Filtration Design Calculations
  • Illustrative Example 4.4.
  • IllustrativeExample 4.5.
  • 4.6. Simplified Calculation of Multi-Compartment Fabric Filtration
  • Illustrative Example 4.6.
  • Problems
  • References
  • Part II. Deep Bed Filtration
  • 5. Deep Bed Filtration: Description and Analysis
  • Notation
  • 5.1. Macroscopic Conservation Equation
  • Illustrative Example 5.1
  • 5.2. Phenomenological Expression for Filtration Rate
  • Illustrative Example 5.2.
  • 5.3. Physical Significance of the Filter Coefficient
  • Illustrative Example 5.3.
  • 5.4. Representation of Filter Media with Cell Models
  • 5.4.1. Happel's Model for Granular Media
  • 5.4.2. Kuwabara's Model for Fibrous Media
  • Illustrative Example 5.4.
  • 5.5. Flow Rate-Pressure Drop Relationships for Flow through Porous Media
  • Illustrative Example 5.5.
  • 5.6. Filter Cleaning by Back Washing and Bed Expansion
  • Illustrative Example 5.6.
  • 5.7. Solution of the Macroscopic Conservation Equations of Deep Bed Filtration
  • Illustrative Example 5.7.
  • Problems
  • References
  • 6. Particle Deposition Mechanisms, Predictions, Determinations and Correlations of Filter Coefficient/Collector Efficiency
  • Notation
  • 6.1. Deposition Mechanisms and Prediction of Collector Efficiency based on Individual Transport Mechanism
  • 6.1.1. Mechanism of Particle Transport
  • Illustrative Example 6.1.
  • Illustrative Example 6.2.
  • Illustrative Example 6.3.
  • 6.1.2. Criteria of Particle Adhesion
  • Illustrative Example 6.4.
  • Illustrative Example 6.5.
  • Illustrative Example 6.6.
  • 6.1.3. Prediction of Collector Efficiency
  • 6.2. Experimental Determination of Filter Coefficient
  • 6.2.1. Determination of the Initial (or clean) Filter Coefficient, ¿ 0
  • 6.2.2. Determination of Deposition Effect on Filter Coefficient
  • Illustrative Example 6.7.
  • 6.3. Correlations of Filter Coefficient/Collector Efficiency of Aerosols
  • 6.3.1. Single Fiber Efficiency of Aerosols in Fibrous Media
  • Illustrative Example 6.8.
  • 6.3.2. Collector Efficiency of Aerosols in Granular Media
  • Illustrative Example 6.9.
  • 6.4. Filter Coefficient Correlations of Hydrosols
  • 6.4.1. Filter Coefficient of Fibrous Media
  • 6.4.2. Filter Coefficient of Granular Media
  • Illustrative Example 6.10.
  • Illusrrative Example 6.1l.
  • 6.5. Particle-Collector Surface Interactions Effect on Hydrosol Deposition in Granular Media
  • 6.5.1. Surface Interaction Forces
  • Illustrative Example 6.12.
  • 6.5.2. Initial Filter Coefficient with Unfavorable Surface Interactions
  • Illustrative Example 6.13.
  • Problems
  • References
  • 7. Deep Bed Filtration Models
  • Notation
  • 7.1. Experimental Results of Filtration Performance
  • 7.2. Models Based on the Kozeny-Carman Equation
  • 7.2.1. Uniform Deposit Layer Hypothesis
  • Illustrative Example 7.1.
  • 7.2.2. Pore-Blocking Hypothesis
  • Illustrative Example 7.2.
  • 7.2.3. A Two-Stage Deposition Hypothesis
  • Illustrative Example 7.3.
  • 7.3. Models Based on Assumption that Deposited Particles Function as Collectors
  • 7.3.1. Deposited Particles as Satellite Collectors
  • Illustrative Example 7.4.
  • 7.3.2. Deposited Particles as Additional Collectors
  • Illustrative Example 7.5.
  • 7.4. Models Based on Changing Particle-Collector Surface
  • Interactions.
  • 7.4.1. A Model Based on Filter Grain Surface Charge Changes
  • 7.4.2. Expressing Surface Interaction Effect in terms of Particle Re-Entrainment
  • Illustrative Example 7.6.
  • 7.4.3. A Model Based on Collector Surface Heterogeneity
  • Illustrative Example 7.7.
  • 7.5. Modeling Filtration as a Stochastic Process
  • Problems
  • References
  • Index