Hamiltonian mechanics of gauge systems /

Saved in:
Bibliographic Details
Author / Creator:Prokhorov, Lev V.
Imprint:Cambridge ; New York : Cambridge University Press, 2011.
Description:xvii, 466 p. : ill. ; 26 cm.
Language:English
Series:Cambridge monographs on mathematical physics
Cambridge monographs on mathematical physics.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8864131
Hidden Bibliographic Details
Other authors / contributors:Shabanov, Sergei. V.
ISBN:9780521895125 (hbk.)
052189512X (hbk.)
Notes:Includes bibliographical references (p. [452]-462) and index.
Table of Contents:
  • Preface
  • 1. Hamiltonian formalism
  • 1.1. Hamilton's principle of stationary action
  • 1.2. Hamiltonian equations of motion
  • 1.3. The Poisson bracket
  • 1.4. Canonical transformations
  • 1.5. Generating functions of canonical transformations
  • 1.6. Symmetries and integrals of motion
  • 1.7. Lagrangian formalism for Grassmann variables
  • 1.8. Hamiltonian formalism for Grassmann variables
  • 1.9. Hamiltonian dynamics on supermanifolds
  • 1.10. Canonical transformations on symplectic supermanifolds
  • 1.11. Noether's theorem for systems on supermanifolds
  • 1.12. Non-canonical transformations
  • 1.13. Examples of systems with non-canonical symplectic structures
  • 1.14. Some generalizations of the Hamiltonian dynamics
  • 1.15. Hamiltonian mechanics. Recent developments
  • 2. Hamiltonian path integrals
  • 2.1. Introduction
  • 2.2. Hamiltonian path integrals in quantum mechanics
  • 2.3. Non-standard terms and basic equivalence rules
  • 2.4. Equivalence rules
  • 2.5. Rules for changing the base point
  • 2.6. Canonical transformations and Hamiltonian path integrals
  • 2.7. Problems with non-trivial boundary conditions
  • 2.8. Quantization by the path integral method
  • 3. Dynamical systems with constraints
  • 3.1. Introduction
  • 3.2. A general analysis of dynamical systems with constraints
  • 3.3. Physical variables in systems with constraints
  • 3.4. Nonlinear Poisson brackets and systems with constraints
  • 4. Quantization of constrained systems
  • 4.1. The Dirac method
  • 4.2. The operator ordering problem in constraints
  • 4.3. Relativistic particle
  • 4.4. Elimination of non-physical variables. The second-class constraints
  • 5. Phase space in gauge theories
  • 5.1. A simple model
  • 5.2. Harmonic oscillator with a conic phase space
  • 5.3. The residual discrete gauge group and the choice of physical variables
  • 5.4. Models with arbitrary simple compact gauge groups
  • 5.5. Gauge systems with Grassmann variables
  • 5.6. More general mechanical gauge systems with bosonic variables
  • 5.7. Systems with Bose and Fermi degrees of freedom
  • 5.8. Yang-Mills theories
  • 5.9. Simple effects of the physical phase space structure in quantum theory
  • 6. Path integrals in gauge theories
  • 6.1. Prehminary remarks
  • 6.2. Hamiltonian path integral for gauge systems with conic phase space
  • 6.3. Models with more complicated structures of the physical phase space
  • 6.4. Models with Grassmann variables
  • 6.5. Hamiltonian path integral in an arbitrary gauge
  • 6.6. Hamiltonian path integrals for gauge systems with bosons andfermions
  • 6.7. The Kato-Trotter product formula for gauge theories
  • 6.8. Simple consequences of the modification of the path integral for gauge systems
  • 7. Confinement
  • 7.1. Introduction
  • 7.2. Kinematics. Gauge fields and fiber bundle theory
  • 7.3. Dynamics. Quantization
  • 7.4. External fields of charges and static forces. Confinement
  • 8. Supplementary material
  • 8.1. A brief survey of the group theory
  • 8.2. Grassmann variables
  • 8.3. Gaussian integrals, the Poisson summation formula, kernel Q n , and Van Fleck determinant
  • 8.4. Elimination of gauge arbitrariness and residual gauge transformations
  • 8.5. Gauge-invariant representations of the unit operator kernel
  • References
  • Index