Advanced air and noise pollution control /

Saved in:
Bibliographic Details
Imprint:Totowa, N.J. : Humana Press, c2005.
Description:1 online resource (xviii, 526 p.) : ill.
Language:English
Series:Handbook of environmental engineering ; v. 2
Handbook of environmental engineering (2004) ; v. 2.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8874415
Hidden Bibliographic Details
Other authors / contributors:Wang, Lawrence K.
Pereira, Norman C.
Hung, Yung-Tse.
ISBN:1588293599 (alk. paper)
9781588293596 (alk. paper)
1592597793 (electronic bk.)
9781592597796 (electronic bk.)
9786610360222
6610360227
Notes:Includes bibliographical references and index.
Other form:Print version: Advanced air and noise pollution control. Totowa, N.J. : Humana Press, c2005 1588293599
Standard no.:10.1007/978-1-59259-779-6
Table of Contents:
  • Preface
  • Contributors
  • 1. Atmospheric Modeling and Dispersion
  • 1. Air Quality Management
  • 2. Air Quality Indices
  • 2.1. US EPA Air Quality Index
  • 2.2. The Mitre Air Quality Index (MAQI)
  • 2.3. Extreme Value Index (EVI)
  • 2.4. Oak Ridge Air Quality Index (ORAQI)
  • 2.5. Allowable Emission Rates
  • 2.6. Effective Stack Height
  • 2.7. Examples
  • 3. Dispersion of Airborne Effluents
  • 3.1. Wind Speed Correction
  • 3.2. Wind Direction Standard Deviations
  • 3.3. Plume Standard Deviations
  • 3.4. Effective Stack Height
  • 3.5. Maximum Ground-Level Concentration
  • 3.6. Steady-State Dispersion Model (Crosswind Pollutant Concentrations)
  • 3.7. Centerline Pollutant Concentrations
  • 3.8. Short-Term Pollutant Concentrations
  • 3.9. Long-Term Pollutant Concentrations
  • 3.10. Stability and Environmental Conditions
  • 3.11. Air Dispersion Applications
  • Nomenclature
  • References
  • 2. Desulfurization and Emissions Control
  • 1. Introduction
  • 1.1. Sulfur Oxides and Hydrogen Sulfide Emissions
  • 1.2. SO[subscript x] Emissions Control Technologies
  • 2. Sulfur Oxides and Hydrogen Sulfide Pollution
  • 2.1. Acid Rain
  • 2.2. Public Health Effects
  • 2.3. Materials Deterioration
  • 2.4. Visibility Restriction
  • 3. US Air Quality Act and SO[subscript x] Emission Control Plan
  • 4. Desulfurization Through Coal Cleaning
  • 4.1. Conventional Coal Cleaning Technologies
  • 4.2. Advanced Coal Cleaning Technologies
  • 4.3. Innovative Hydrothermal Desulfurization for Coal Cleaning
  • 5. Desulfurization Through Vehicular Fuel Cleaning
  • 6. Desulfurization Through Coal Liquefaction, Gasification, and Pyrolysis
  • 6.1. Coal Gasification
  • 6.2. Coal Liquefaction
  • 6.3. Pyrolysis
  • 7. Desulfurization Through Coal-Limestone Combustion
  • 7.1. Fluidized-Bed Combustion
  • 7.2. Lime-Coal Pellets
  • 8. Hydrogen Sulfide Reduction by Emerging Technologies
  • 8.1. Innovative Wet Scrubbing Using a Nontoxic Chelated Iron Catalyst
  • 8.2. Conventional Wet Scrubbing Using Alkaline and Oxidative Scrubbing Solution
  • 8.3. Scavenger Adsorption
  • 8.4. Selective Oxidation of Hydrogen Sulfide in Gasifier Synthesis Gas
  • 8.5. Biological Oxidation of Hydrogen Sulfide
  • 9. "Wet" Flue Gas Desulfurization Using Lime and Limestone
  • 9.1. FGD Process Description
  • 9.2. FGD Process Chemistry
  • 9.3. FGD Process Design and Operation Considerations
  • 9.4. FGD Process Modifications and Additives
  • 9.5. Technologies for Smelters
  • 9.6. FGD Process Design Configurations
  • 9.7. FGD Process O&M Practices
  • 10. Emerging "Wet" Sulfur Oxide Reduction Technologies
  • 10.1. Advanced Flue Gas Desulfurization Process
  • 10.2. CT-121 FGD Process
  • 10.3. Milliken Clean Coal Technology Demonstration Project
  • 11. Emerging "Dry" Sulfur Oxides Reduction Technologies and Others
  • 11.1. Dry Scrubbing Using Lime or Sodium Carbonate
  • 11.2. LIMB and Coolside Technologies
  • 11.3. Integration of Processes for Combined SO[subscript x] and NO[subscript x] Reduction
  • 11.4. Gas Suspension Absorbent Process
  • 11.5. Specialized Processes for Smelter Emissions: Advanced Calcium Silicate Injection Technology
  • 12. Practical Examples
  • 13. Summary
  • Nomenclature
  • References
  • 3. Carbon Sequestration
  • 1. Introduction
  • 1.1. General Description
  • 1.2. Carbon Sequestration Process Description
  • 2. Development of a Carbon Sequestration Road Map
  • 3. Terrestrial Sequestration
  • 4. CO[subscript 2] Separation and Capture
  • 5. Geologic Sequestration Options
  • 6. Ocean Sequestration
  • 7. Chemical and Biological Fixation and Reuse
  • 8. Concluding Thoughts
  • Nomenclature
  • Acknowledgment
  • References
  • 4. Control of NO[subscript x] During Stationary Combustion
  • 1. Introduction
  • 2. The 1990 Clean Air Act
  • 3. NO[subscript x] Control Technologies
  • 3.1. In-Furnace NO[subscript x] Control
  • 3.2. Postcombustion NO[subscript x] Control
  • 3.3. Hybrid Control Systems
  • 3.4. Simultaneous SO[subscript 2] and NO[subscript x] Control
  • 4. Results of Recent Demonstration Plants on NO[subscript x] Control
  • 5. Future Regulation Considerations
  • 6. Future Technology Developments in Multipollutant Control
  • References
  • 5. Control of Heavy Metals in Emission Streams
  • 1. Introduction
  • 2. Principle and Theory
  • 2.1. Reactions in the Incinerator
  • 2.2. Control of Metal Emissions
  • 3. Control Device of Heavy Metals
  • 3.1. Gravity Settling Chamber
  • 3.2. Cyclone
  • 3.3. Electrostatic Precipitator
  • 3.4. Quench
  • 3.5. Scrubber
  • 3.6. Fabric Filters
  • 3.7. Vitrification
  • 3.8. Solidification
  • 3.9. Chemical Stabilization and Fixation
  • 3.10. Extraction
  • 3.11. Fluidized-Bed Metal Capture
  • 4. Metal Emission Control Examples
  • 4.1. Municipal Solid-Waste Incineration
  • 4.2. Asphalt-Treatment Plants
  • 4.3. Hazardous Waste Incinerator Operation at Low-to-Moderate Temperature
  • Nomenclature
  • References
  • 6. Ventilation and Air Conditioning
  • 1. Air Ventilation and Circulation
  • 1.1. General Discussion
  • 1.2. Typical Applications
  • 2. Ventilation Requirements
  • 2.1. Rate of Air Change
  • 2.2. Rate of Minimum Air Velocity
  • 2.3. Volumetric Airflow Rate per Unit Floor Area
  • 2.4. Heat Removal
  • 3. Ventilation Fans
  • 3.1. Type
  • 3.2. Fan Laws
  • 3.3. Fan Selection to Meet a Specific Sound Limit
  • 4. Hood and Duct Design
  • 4.1. Theoretical Considerations
  • 4.2. Hoods for Cold Processes
  • 4.3. Hoods for Hot Processes
  • 4.4. Ducts
  • 5. Air Conditioning
  • 5.1. General Discussion and Considerations
  • 5.2. Typical Applications
  • 6. Design Examples
  • 7. Health Concern and Indoor Pollution Control
  • 7.1. Health Effects and Standards
  • 7.2. Indoor Air Quality
  • 7.3. Pollution Control in Future Air Conditioned Environments
  • 8. Heating, Ventilating, and Air Conditioning
  • 8.1. Energy and Ventilation
  • 8.2. HVAC Recent Approach
  • 8.3. HVAC and Indoor Air Quality Control
  • Nomenclature
  • Acknowledgments
  • References
  • Appendix A. Recommended Threshold Limit Values of Hazardous Substances
  • Appendix B. Tentative Threshold Limit Values of Hazardous Substances
  • Appendix C. Respirable Dusts Evaluated by Count
  • Appendix D. Converting from Round to Rectangular Ductwork
  • Appendix E. Procedure for Fan Selection to Meet a Specific Sound Level Limit
  • Appendix F. Method for Determination of Room Attenuation Effect (RAE)
  • Appendix G. Calculation of a Single-Number Sound-Power Level Adjusted to "A" Weighted Network (LwA)
  • Appendix H. Determination of Composite Sound Level
  • Appendix I. Noise Absorption Coefficients of General Building Materials
  • 7. Indoor Air Pollution Control
  • 1. Indoor Air Quality: Increasing Public Health Concern
  • 2. Indoor Air Pollution and Health Effects
  • 2.1. Sources of Indoor Air Pollution
  • 2.2. Health Effects of Indoor Air Pollutants
  • 3. Indoor Air Pollution
  • 3.1. Identifying Indoor Air Pollution Problems
  • 3.2. Monitoring Indoor Air Quality
  • 3.3. Mitigation Measures
  • 4. Regulatory and Nonregulatory Measures for Indoor Air Quality Management
  • References
  • 8. Odor Pollution Control
  • 1. Introduction
  • 1.1. Sources of Odors
  • 1.2. Odor Classification
  • 1.3. Regulations
  • 1.4. Odor Control Methods
  • 2. Nonbiological Method
  • 2.1. Emission Control
  • 2.2. Air Dilution
  • 2.3. Odor Modification
  • 2.4. Adsorption Method
  • 2.5. Wet Scrubbing or Gas Washing Oxidation
  • 2.6. Design Example of Wet Scrubbing or Gas Washing Oxidation
  • 2.7. Incineration
  • 2.8. Nonthermal Plasma Method
  • 2.9. Indirect Plasma Method (Ozone or Radicals Injection)
  • 2.10. Electrochemical Method
  • 3. Biological Method
  • 3.1. Introduction
  • 3.2. Biological Control
  • 3.3. Working Principles of Biological Treatment Processes
  • 3.4. Design of Biofilters
  • Nomenclature
  • References
  • 9. Radon Pollution Control
  • 1. Introduction
  • 1.1. Units of Radioactivity
  • 1.2. Growth of Radioactive Products in a Decay Series
  • 2. Instrumental Methods of Radon Measurement
  • 2.1. Radon Gas Measurement Methods
  • 2.2. Radon Decay Product Measurement Methods
  • 3. Health Effects of Radon
  • 4. Radon Mitigation in Domestic Properties
  • 4.1. Source Removal
  • 4.2. Contaminated Well Water
  • 4.3. Building Materials
  • 4.4. Types of House and Radon Reduction
  • References
  • 10. Cooling of Thermal Discharges
  • 1. Introduction
  • 2. Cooling Ponds
  • 2.1. Mechanism of Heat Dissipation (Cooling)
  • 2.2. Design of Cooling Ponds
  • 3. Cooling Towers
  • 3.1. Mechanism of Heat Dissipation in Cooling Towers
  • 3.2. Types of Towers
  • 3.3. Natural Draft Atmospheric Cooling Towers
  • 3.4. Natural Draft, Wet Hyperbolic Cooling Towers
  • 3.5. Example 1
  • 3.6. Hybrid Draft Cooling Towers
  • 3.7. Induced (Mechanical) or Forced Draft Wet Cooling Towers
  • 3.8. Cooling Tower Performance Problems
  • Nomenclature
  • Glossary
  • Acknowledgment
  • References
  • 11. Performance and Costs of Air Pollution Control Technologies
  • 1. Introduction
  • 1.1. Air Emission Sources and Control
  • 1.2. Air Pollution Control Devices Selection
  • 2. Technical Considerations
  • 2.1. Point Source VOC Controls
  • 2.2. Point Source PM Controls
  • 2.3. Area Source VOC and PM Controls
  • 2.4. Pressure Drops Across Various APCDs
  • 3. Energy and Cost Considerations for Minor Point Source Controls
  • 3.1. Sizing and Selection of Cyclones, Gas Precoolers, and Gas Preheaters
  • 3.2. Sizing and Selection of Fans, Ductworks, Stacks, Dampers, and Hoods
  • 3.3. Cyclone Purchase Costs
  • 3.4. Fan Purchase Cost
  • 3.5. Ductwork Purchase Cost
  • 3.6. Stack Purchase Cost
  • 3.7. Damper Purchase Cost
  • 4. Energy and Cost Considerations for Major Point Source Controls
  • 4.1. Introduction
  • 4.2. Sizing and Selection of Major Add-on Air Pollution Control Devices
  • 4.3. Purchased Equipment Costs of Major Add-on Air Pollution Control Devices
  • 5. Energy and Cost Considerations for Area Source Controls
  • 5.1. Introduction
  • 5.2. Cover Cost
  • 5.3. Foam Cost
  • 5.4. Wind Screen Cost
  • 5.5. Water Spray Cost
  • 5.6. Water Additives Costs
  • 5.7. Enclosure Costs
  • 5.8. Hood Costs
  • 5.9. Operational Control Costs
  • 6. Capital Costs in Current Dollars
  • 7. Annualized Operating Costs
  • 7.1. Introduction
  • 7.2. Direct Operating Costs
  • 7.3. Indirect Operating Costs
  • 8. Cost Adjustments and Considerations
  • 8.1. Calculation of Current and Future Costs
  • 8.2. Cost Locality Factors
  • 8.3. Energy Conversion and Representative Heat Values
  • 8.4. Construction Costs, O&M Costs, Replacement Costs, and Salvage Values
  • 9. Practice Examples
  • Nomenclature
  • References
  • Appendix. Conversion Factors
  • 12. Noise Pollution
  • 1. Introduction
  • 2. Characteristics of Noise
  • 3. Standards
  • 4. Sources
  • 5. Effects
  • 6. Measurement
  • 7. Control
  • References
  • 13. Noise Control
  • 1. Introduction
  • 2. The Physics of Sound
  • 2.1. Sound
  • 2.2. Speed of Sound
  • 2.3. Sound Pressure
  • 2.4. Frequency
  • 2.5. Wavelength
  • 2.6. rms Sound Pressure
  • 2.7. Sound Level Meter
  • 2.8. Sound Pressure Level
  • 2.9. Loudness
  • 2.10. Sound Power Level
  • 2.11. Sound Energy Density
  • 3. Indoor Sound
  • 3.1. Introduction
  • 3.2. Sound Buildup and Sound Decay
  • 3.3. Diffuse Sound Field
  • 3.4. Reverberation Time
  • 3.5. Optimum Reverberation Time
  • 3.6. Energy Density and Reverberation Time
  • 3.7. Relationship Between Direct and Reflected Sound
  • 4. Sound Out-of-Doors
  • 4.1. Sound Propagation
  • 4.2. Wind and Temperature Gradients
  • 4.3. Barriers
  • 5. Noise Reduction
  • 5.1. Absorptive Materials
  • 5.2. Nonacoustical Parameters of Absorptive Materials
  • 5.3. Absorption Coefficients
  • 6. Sound Isolation
  • 6.1. Introduction
  • 6.2. Transmission Loss
  • 6.3. Noise Reduction
  • 6.4. Noise Isolation Class (NIC)
  • 7. Vibrations
  • 7.1. Introduction
  • 7.2. Vibration Isolation
  • 8. Active Noise Control
  • 9. Design Examples
  • 9.1. Indoor Situation
  • 9.2. Outdoor Situation
  • Glossary
  • Nomenclature
  • References
  • Index