Queuing theory and telecommunications : networks and applications /

Saved in:
Bibliographic Details
Author / Creator:Giambene, Giovanni, 1966-
Imprint:New York : Springer, c2005.
Description:1 online resource (xvii, 585 p.) : ill.
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8875694
Hidden Bibliographic Details
ISBN:0387240659 (alk. paper)
9780387240657 (alk. paper)
0387240667 (ebook)
9780387240664 (ebook)
6611334572
9786611334574
Notes:Includes bibliographical references and index.
Summary:"Queuing Theory and Telecommunications: Networks and Applications provides some fundamental knowledge in queuing theory, as well as essential analytical methods and approaches to be employed to evaluate and design telecommunication networks." "This work provides methods for teletraffic analysis as well as descriptions of current network technologies such as ISDN, B-ISDN, IP-based networks, MPLS, GMPLS, NGN and local assess systems, including A DSL-based, Ethernet, Token Passing, and WiFi. Also, numerous solved exercises are provided in order to illustrate the applications of queuing theory in telecommunication networks. The following advanced telecommunication problems are modeled and solved by means of queuing analysis: statistics of the transmission delay for packet data traffic arriving at a transmission buffer, blocking behavior for bursty call arrival processes; characterization of Markovian traffic sources; performance of traffic regulators, analysis of access protocols and more. The author provides readers with a correct understanding of fundamental methods to be applied in the analysis of telecommunication systems." "Queuing Theory and Telecommunications: Network and Applications is a reference text for advanced undergraduate and graduate level courses in telecommunications engineering and networking. It will also serve as a useful work for system engineers involved in network dimensioning."--Jacket.
Other form:Print version: Giambene, Giovanni, 1966- Queuing theory and telecommunications. New York : Springer, c2005 0387240659 9780387240657
Table of Contents:
  • Dedication
  • Author Biography
  • Preface
  • Acknowledgments
  • Part I. Telecommunication Networks
  • 1. Introduction to Telecommunication Networks
  • 1.1. Historic steps in the telecommunication era
  • 1.2. Standardization bodies in telecommunications
  • 1.3. Telecommunication networks: general concepts
  • 1.3.1. Transmissions in telecommunication networks
  • 1.3.2. Switching techniques in telecommunication networks
  • 1.3.3. The ISO/OSI reference model
  • 1.3.4. Traffic engineering: general concepts
  • 1.3.5. Queuing theory in telecommunications
  • 1.4. Transmission media
  • 1.4.1. Copper medium: the twisted pair
  • 1.4.2. Copper medium: the coaxial cable
  • 1.4.3. Wireless medium
  • 1.4.4. Optic fibers
  • 1.5. Multiplexing hierarchy
  • 1.5.1. FDM
  • 1.5.2. TDM
  • 1.5.3. The E1 bearer structure
  • 1.6. The telephone network
  • 1.6.1. Digital transmissions through POTS
  • 1.6.2. Switching elements in PSTN
  • 1.7. Bibliographic references
  • 2. Digital Networks
  • 2.1. Digital networks introduction
  • 2.1.1. X.25-based networks
  • 2.1.2. ISDN
  • 2.1.3. Frame Relay-based networks
  • 2.2. B-ISDN and ATM technology
  • 2.2.1. ATM protocol stack
  • 2.2.2. Cell format
  • 2.2.3. ATM protocol stack
  • 2.2.4. Traffic classes and ALL layer protocols
  • 2.2.5. ATM switches
  • 2.2.6. ATM switch architectures
  • 2.2.7. Management of traffic
  • 2.2.8. ATM physical later
  • 2.2.9. Internet access through ATM over ADSL
  • 2.3. Bibliographic references
  • 3. IP-based Networks
  • 3.1. Introduction
  • 3.2. The Internet
  • 3.2.1. Introduction to the TCP/IP protocol suite
  • 3.2.2. TCP/IP protocol architecture
  • 3.3. IP Addressing
  • 3.3.1. IPv4 datagram format
  • 3.3.2. IP subnetting
  • 3.3.3. IP version 6
  • 3.4. IP Routing
  • 3.4.1. Routing algorithms
  • 3.4.2. Interior routing and exterior routing
  • 3.5. Transport layer
  • 3.5.1. TCP and UDP protocols
  • 3.5.2. Port numbers and sockets
  • 3.6. IP traffic over ATM networks
  • 3.6.1. The LIS method
  • 3.6.2. The Next Hop Routing Protocol
  • 3.6.3. The integrated approach for IP over ATM
  • 3.7. MultiProtocol Label Switching technology
  • 3.7.1. Comparison between IP routing and label switching
  • 3.7.2. Operations on labels
  • 3.7.3. MPLS header
  • 3.7.4. MPLS nested domains
  • 3.7.5. MPLS forwarding tables
  • 3.7.6. Protocols for the creation of an LSP
  • 3.7.7. IP/MPLS over ATM
  • 3.7.8. MPLS traffic management
  • 3.8. GMPLS technology
  • 3.9. Next-Generation Networks
  • 3.9.1. NGN architecture
  • 3.9.2. DWDM technology
  • 3.9.3. QoS provision in IP-based networks
  • 3.9.4. Voice over IP
  • 3.10. Bibliographic references
  • Part II. Queuing Theory and Applications
  • 4. Survey on Probability Theory
  • 4.1. The notion of probability and basic properties
  • 4.2. Random variables: basic definitions and properties
  • 4.2.1. Sum of independent random variables
  • 4.2.2. Minimum and maximum of random variables
  • 4.2.3. Comparisons between random variables
  • 4.2.4. Moments of the random variables
  • 4.2.5. Random variables in the field of telecommunications
  • 4.3. Transformations for random variables
  • 4.3.1. The probability generating function
  • 4.3.2. The characteristic function of a pdf
  • 4.3.3. The Laplace transform of a pdf
  • 4.4. Methods for the generation of random variables
  • 4.4.1. Method of the inverse of the distribution function
  • 4.4.2. Method of the transformation
  • 4.5. Solved exercises
  • 4.6. Bibliographic references
  • 5. Markov Chains and Queuing Theory
  • 5.1. Queues and stochastic processes
  • 5.2. Poisson arrival process
  • 5.2.1. Sum of independent Poisson processes
  • 5.2.2. Random splitting of a Poisson process
  • 5.2.3. Compound Poisson processes
  • 5.3. Birth-death Markov chains
  • 5.4. Notations for queuing systems
  • 5.5. The Little theorem
  • 5.6. M/M/1 queue analysis
  • 5.7. M/M/1/K queue analysis
  • 5.7.1. M/M/S queue analysis
  • 5.8. M/M/S/S queue analysis
  • 5.9. The M/M/[infinity] queue analysis
  • 5.10. Distribution of the queuing delays in the FIFO case
  • 5.10.1. M/M/1 case
  • 5.10.2. M/M/S case
  • 5.11. Erlang-B generalization for non-Poissonian arrivals
  • 5.11.1. The traffic types in the M/M/S/S queue
  • 5.11.2. Blocking probability for non-Poissonian arrivals
  • 5.12. Solved exercises
  • 5.13. Bibliographic references
  • 6. M/G/1 Queuing Theory and Applications
  • 6.1. The M/G/1 queue
  • 6.1.1. The M/D/1 case
  • 6.2. M/G/1 system delay distribution in the FIFO case
  • 6.3. Laplace transform numerical inversion method
  • 6.4. Generalizations of the M/G/1 theory
  • 6.5. Applications of the M/G/1 analysis to ATM
  • 6.6. Different imbedding instants in the M/G/1 theory
  • 6.6.1. Chain imbedded to the slot end instants of the output line
  • 6.6.2. Chain imbedded to the cell transmission completion
  • 6.6.3. Chain imbedded to the message transmission completion
  • 6.7. M/G/1 with geometrically distributed messages
  • 6.7.1. Chain imbedded to packet transmission completion
  • 6.7.2. Chain imbedded to message transmission completion
  • 6.8. M/G/1 and differentiated service times
  • 6.9. Solved exercises
  • 6.10. Bibliographic references
  • 7. Local Area Networks Analysis
  • 7.1. Introduction
  • 7.1.1. Standards for local area networks
  • 7.2. Contention-based protocols
  • 7.2.1. Aloha protocol
  • 7.2.2. Slotted-Aloha protocol
  • 7.2.3. The Aloha protocol with ideal capture effect
  • 7.2.4. CSMA schemes
  • 7.3. Demand-assignment protocols
  • 7.3.1. Polling protocol
  • 7.3.2. Token passing protocols
  • 7.3.3. Analysis of token and polling schemes
  • 7.3.4. Reservation Aloha (R-Aloha) protocol
  • 7.3.5. Packet Reservation Multiple Access (PRMA) protocol
  • 7.3.6. Comparison between CSMA/CD and token protocols
  • 7.4. Fixed assignment protocols
  • 7.4.1. Frequency Division Multiple Access (FDMA)
  • 7.4.2. Time Division Multiple Access (TDMA)
  • 7.4.3. Resource reuse in cellular systems
  • 7.4.4. Code Division Multiple Access (CDMA)
  • 7.5. Solved exercises
  • 7.6. Bibliographic references
  • 8. Networks of Queues
  • 8.1. Introduction
  • 8.1.1. Traffic rate equations
  • 8.1.2. The Little theorem for the whole network
  • 8.2. The Burke theorem
  • 8.3. The Jackson theorem
  • 8.3.1. Analysis of a queue with feedback
  • 8.4. Traffic matrices
  • 8.5. Network planning aspects
  • 8.6. Solved exercises
  • 8.7. Bibliographic references
  • Index