Kinetics of catalytic reactions /

Saved in:
Bibliographic Details
Author / Creator:Vannice, M. Albert.
Imprint:New York : Springer, c2005.
Description:1 online resource (xvii, 240 p.) : ill.
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8875805
Hidden Bibliographic Details
ISBN:9780387259727
0387259724
Notes:Includes bibliographical references and index.
Description based on print version record.
Other form:Print version: Vannice, M. Albert. Kinetics of catalytic reactions. New York : Springer, c2005 0387246495 9780387246499
Table of Contents:
  • Foreword
  • Preface
  • List of Symbols
  • 1. Regular Symbols
  • 2. Greek Symbols
  • 3. Subscripts
  • 1. Introduction
  • 2. Definitions and Concepts
  • 2.1. Stoichiometric Coefficients
  • 2.2. Extent of Reaction
  • 2.3. Rate of Reaction
  • 2.4. Turnover Frequency or Specific Activity
  • 2.5. Selectivity
  • 2.6. Structure-Sensitive and Structure4nsensitive Reactions
  • 2.7. Elementary Step and Rate Determining Step (RDS)
  • 2.8. Reaction Pathway or Catalytic Cycle
  • 2.9. Most Abundant Reaction Intermediate (MARI)
  • 2.10. Chain Reactions
  • 2.11. Reaction Rates in Reactors
  • 2.12. Metal Dispersion (Fraction Exposed)
  • 2.13. Meta1Support Interactions (MSI) References
  • 3. Catalyst Characterization
  • 3.1. Total (BET) Surface Area
  • 3.2. Pore Volume and Pore Size Distribution
  • 3.2.1. Hg Porosimetry Method
  • 3.2.2. N2 Desorption Method
  • 3.2.3. Overall Pore Size Distribution
  • 3.3. Metal Surface Area, Crystallite Size, and Dispersion
  • 3.3.1. Transmission Electron Microscopy (TEM)
  • 3.3.2. X-Ray Techniques
  • 3.3.2.1. Line Broadening of X-Ray Diffraction (XRD) Peaks
  • 3.3.2.2. Extended X-Ray Absorption Fine Structure (EXAFS)
  • 3.3.3. Magnetic Measurements
  • 3.3.4. Chemisorption Methods
  • 3.3.4.1. H2 Chemisorption
  • 3.3.4.2. CO Chemisorption
  • 3.3.4.3. 02 Chemisorption
  • 3.3.4.4. H2''02 Titration Techniques 3
  • 3.5. Relationships Between Metal Dispersion, Surface Area, and Crystallite Size References Problems
  • 4. Acquisition and Evaluation of Reaction Rate Data
  • 4.1. Types of Reactors
  • 4.1.1. Batch Reactor
  • 4.1.2. Semi-Batch Reactor
  • 4.1.3. Plug-Flow Reactor (PFR)
  • 4.1.4. Continuous Flow Stirred-Tank Reactor (CSTR)
  • 4.2. Heat and Mass Transfer Effects
  • 4.2.1. Interphase (External) Gradients (Damkohler Number)
  • 4.2.1.1. Isothermal Conditions
  • 4.2.1.2. Nonisothermal Conditions
  • 4.2.2. Intraphase (Internal) Gradients (Thiele Modulus)
  • 4.2.1.1. Isothermal Conditions
  • 4.2.2.2. Nonisothermal Conditions
  • 4.2.2.3. Determining an Intraphase (Internal) Effectiveness Factor from a Thiele Modulus
  • 4.2.3. Intraphase Gradients (Weisz-Prater Criterion)
  • 4.2.3.1. Gas-Phase or Vapor-Phase Reactions
  • 4.2.3.2. Liquid-Phase Reactions
  • 4.2.4. Other Criteria to Verify the Absence of Mass and Heat Transfer Limitations (The Madon-Boudart Method)
  • 4.2.5. Summary of Tests for Mass and Heat Transfer Effects References Problems
  • 5. Adsorption and Desorption Processes
  • 5.1. Adsorption Rate
  • 5.2. Desorption Rate
  • 5.3. Adsorption Equilibrium on Uniform (Ideal) Surfaces-Langmuir Isotherms
  • 5.3.1. Single-Site (Nondissociative) Adsorption
  • 5.3.2. Dual-Site (Dissociative) Adsorption
  • 5.3.3. Derivation of the Langmuir Isotherm by Other Approaches
  • 5.3.4. Competitive Adsorption
  • 5.4. Adsorption Equilibrium on Nonuniform (Nonideal) Surfaces
  • 5.4.1. The Freundlich Isotherm
  • 5.4.2. The Temkin Isotherm
  • 5.5. Activated Adsorption References Problems
  • 6. Kinetic Data Analysis and Evaluation of Model Parameters for Uniform (Ideal) Surfaces
  • 6.1. Transition-State Theory (TST) or Absolute Rate Theory
  • 6.2. The Steady-State Approximation (SSA)
  • 6.3. Heats of Adsorption and Activation Barriers on Metal Surfaces: BOC-MP/UBI-QEP Method
  • 6.3.1. Basic BOC-MP/UBI-QEP Assumptions
  • 6.3.2. Heats of Atomic Chemisorption
  • 6.3.3. Heats of Molecular Chemisorption
  • 6.3.4. Activation Barriers for Dissociation and Recombination on Metal Surfaces
  • 6.4. Use of a Rate Determining Step (RDS) and/or a Most Abundant Reaction Intermediate (MARl)
  • 6.5. Evaluation of Parameter Consistency in Rate Expressions for Ideal Surfaces References Problems
  • 7. Modeling Reactions on Uniform (Ideal) Surfaces
  • 7.1. Reaction Models with a RDS Unimolecular Surface Reactions
  • 7.2. Reaction Models with a RDS Bimolecular Surface Reactions
  • 7.3. Reaction Models with a RDS Reactions between an Adsorbed Species and a Gas-Phase Species
  • 7.4. Reaction Models with no RDS
  • 7.4.1. A Series of Irreversible Steps - General Approach
  • 7.4.2. Redox Reactions: The Mars-van Krevelen Rate Law
  • 7.5. Data Analysis with an Integral Reactor
  • 7.6. Occurrence of a Very High Reaction Order References Problems
  • 8. Modeling Reactions on Nonuniform (Nonideal) Surfaces
  • 8.1. Initial Models of a Nonuniform Surface
  • 8.2. Correlations in Kinetics
  • 8.3. Formalism of a Temkin Surface