High-energy-density physics : fundamentals, inertial fusion, and experimental astrophysics /

Saved in:
Bibliographic Details
Author / Creator:Drake, R. Paul.
Imprint:Berlin ; New York : Springer, c2006.
Description:1 online resource (xv, 534 p.) : ill.
Language:English
Series:Shock wave and high pressure phenomena
Shock wave and high pressure phenomena.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8878497
Hidden Bibliographic Details
ISBN:9783540293149 (acid-free paper)
3540293140 (acid-free paper)
9783540293156
3540293159
6611330496
9786611330491
Notes:Includes bibliographical references (p. [519]-528) and index.
Other form:Print version: Drake, R. Paul. High-energy-density physics. Berlin ; New York : Springer, c2006 9783540293149 3540293140
Table of Contents:
  • 1. Introduction to High-Energy-Density Physics
  • 1.1. Some Historical Remarks
  • 1.2. Regimes of High-Energy-Density Physics
  • 1.3. An Introduction to Inertial Confinement Fusion
  • 1.4. An Introduction to Experimental Astrophysics
  • 1.5. Some Connections to Prior Work
  • 1.6. Variables and Notation
  • 2. Descriptions of Fluids and Plasmas
  • 2.1. The Euler Equations for a Polytropic Gas
  • 2.2. The Maxwell Equations
  • 2.3. More General and Complete Single-Fluid Equations
  • 2.3.1. General Single-Fluid Equations
  • 2.3.2. Magnetohydrodynamics
  • 2.3.3. Single Fluid, Three Temperature
  • 2.3.4. Approaches to Computer Simulation
  • 2.4. Plasma Theories
  • 2.4.1. Regimes of Validity of Traditional Plasma Theory
  • 2.4.2. The Two-Fluid Equations
  • 2.4.3. The Kinetic Description
  • 2.5. Single-Particle Motions
  • 3. Properties of High-Energy-Density Plasmas
  • 3.1. Simple Equations of State
  • 3.1.1. Polytropic Gases
  • 3.1.2. Radiation-Dominated Plasma
  • 3.1.3. Fermi-Degenerate EOS
  • 3.2. Ionizing Plasmas
  • 3.2.1. Ionization Balance from the Saha Equation
  • 3.2.2. Continuum Lowering and the Ion Sphere Model
  • 3.2.3. Coulomb Interactions
  • 3.3. Thermodynamics of Ionizing Plasmas
  • 3.3.1. Generalized Polytropic Indices
  • 3.3.2. Pressure, Energy, and Their Consequences
  • 3.3.3. The EOS Landscape
  • 3.4. Equations of State for Computations
  • 3.4.1. The Thomas-Fermi Model and QEOS
  • 3.4.2. Tabular Equations of State
  • 3.5. Equations of State in the Laboratory and in Astrophysics
  • 3.5.1. The Astrophysical Context for EOS
  • 3.5.2. Connecting EOS from the Laboratory to Astrophysics
  • 3.6. Experiments to Measure Equations of State
  • 3.6.1. Direct Flyer-Plate Measurements
  • 3.6.2. Impedance Matching
  • 3.6.3. Other Techniques
  • 4. Shocks and Rarefactions
  • 4.1. Shock Waves
  • 4.1.1. Jump Conditions
  • 4.1.2. The Shock Hugoniot and Equations of State
  • 4.1.3. Useful Shock Relations
  • 4.1.4. Entropy Changes Across Shocks
  • 4.1.5. Oblique Shocks
  • 4.1.6. Shocks and Interfaces, Flyer Plates
  • 4.2. Rarefaction Waves
  • 4.2.1. The Planar Isothermal Rarefaction and Self-Similar Analysis
  • 4.2.2. Riemann Invariants
  • 4.2.3. Planar Adiabatic Rarefactions
  • 4.3. Blast Waves
  • 4.3.1. Energy Conservation in Blast Waves
  • 4.3.2. A General Discussion of Self-Similar Motions
  • 4.3.3. The Sedov-Taylor Spherical Blast Wave
  • 4.4. Phenomena at Interfaces
  • 4.4.1. Shocks at Interfaces and Their Consequences
  • 4.4.2. Overtaking Shocks
  • 4.4.3. Reshocks in Rarefactions
  • 4.4.4. Blast Waves at Interfaces
  • 4.4.5. Rarefactions at Interfaces
  • 4.4.6. Oblique Shocks at Interfaces
  • 5. Hydrodynamic Instabilities
  • 5.1. Introduction to the Rayleigh-Taylor Instability
  • 5.1.1. Buoyancy as a Driving Force
  • 5.1.2. Fundamentals of the Fluid-Dynamics Description
  • 5.2. Applications of the Linear Theory of the Rayleigh-Taylor Instability
  • 5.2.1. Rayleigh-Taylor Instability with Two Uniform Fluids
  • 5.2.2. Effects of Viscosity on the Rayleigh-Taylor Instability
  • 5.2.3. Rayleigh-Taylor with Density Gradients and the Global Mode
  • 5.3. The Convective Instability or the Entropy Mode
  • 5.4. Buoyancy-Drag Models of the Nonlinear Rayleigh-Taylor State
  • 5.5. Mode Coupling
  • 5.6. The Kelvin-Helmholtz Instability
  • 5.6.1. Fundamental Equations for Kelvin-Helmholtz Instabilities
  • 5.6.2. Uniform Fluids with a Sharp Boundary
  • 5.6.3. Otherwise Uniform Fluids with a Distributed Shear Layer
  • 5.6.4. Uniform Fluids with a Transition Region
  • 5.7. Shock Stability and Richtmyer-Meskov Instability
  • 5.7.1. Shock Stability
  • 5.7.2. Interaction of Shocks with Rippled Interfaces
  • 5.7.3. Postshock Evolution of the Interface; Richtmyer Meshkov Instability
  • 5.8. Hydrodynamic Turbulence
  • 6. Radiative Transfer
  • 6.1. Basic Concepts
  • 6.1.1. Properties and Description of Radiation
  • 6.1.2. Thermal Radiation
  • 6.1.3. Types of Interaction Between Radiation and Matter
  • 6.1.4. Description of the Net Interaction of Radiation and Matter
  • 6.2. Radiation Transfer
  • 6.2.1. The Radiation Transfer Equation
  • 6.2.2. Radiative Transfer Calculations
  • 6.2.3. Opacities in Astrophysics and the Laboratory
  • 6.2.4. Radiation Transfer in the Equilibrium Diffusion Limit
  • 6.2.5. Nonequilibrium Diffusion and Two-Temperature Models
  • 6.3. Relativistic Considerations for Radiative Transfer
  • 7. Radiation Hydrodynamics
  • 7.1. Radiation Hydrodynamic Equations
  • 7.1.1. Fundamental Equations
  • 7.1.2. Thermodynamic Relations
  • 7.2. Radiation and Fluctuations
  • 7.2.1. Radiative Acoustic Waves; Optically Thick Case
  • 7.2.2. Cooling When Transport Matters
  • 7.2.3. Optically Thin Acoustic Waves
  • 7.2.4. Radiative Thermal Instability
  • 7.3. Radiation Diffusion and Marshak Waves
  • 7.3.1. Marshak Waves
  • 7.3.2. Ionizing Radiation Wave
  • 7.3.3. Constant-Energy Radiation Diffusion Wave
  • 7.4. Radiative Shocks
  • 7.4.1. Regimes of Radiative Shocks
  • 7.4.2. Fluid Dynamics of Radiative Shocks
  • 7.4.3. Models of Radiative Precursors
  • 7.4.4. Optically Thin Radiative Shocks
  • 7.4.5. Radiative Shocks that are Thick Downstream and Thin Upstream
  • 7.4.6. Fluid Dynamics of Optically Thick Radiative Shocks
  • 7.4.7. Optically Thick Shocks-Radiative-Flux Regime
  • 7.4.8. Radiation-Dominated Optically Thick Shocks
  • 7.4.9. Electron-Ion Coupling in Shocks
  • 7.5. Ionization Fronts
  • 8. Creating High-Energy-Density Conditions
  • 8.1. Direct Laser Irradiation
  • 8.1.1. Laser Technology
  • 8.1.2. Laser Focusing
  • 8.1.3. Propagation and Absorption of Electromagnetic Waves
  • 8.1.4. Laser Scattering and Laser-Plasma Instabilities
  • 8.1.5. Electron Heat Transport
  • 8.1.6. Ablation Pressure
  • 8.2. Hohlraums
  • 8.2.1. X-Ray Conversion of Laser Light
  • 8.2.2. X-Ray Production by Ion Beams
  • 8.2.3. X-Ray Ablation
  • 8.2.4. Problems with Hohlraums
  • 8.3. Z-Pinches and Related Methods
  • 8.3.1. Z-Pinches for High-Energy-Density Physics
  • 8.3.2. Dynamic Hohlraums
  • 8.3.3. Magnetically Driven Flyer Plates
  • 9. Inertial Confinement Fusion
  • 9.1. The Final State
  • 9.1.1. What Fuel, Under What Conditions?
  • 9.1.2. Energy Gain: Is This Worth Doing?
  • 9.1.3. Properties of Compressed DT Fuel
  • 9.2. Creating and Igniting the Final State
  • 9.2.1. Achieving a Highly Compressed State
  • 9.2.2. Igniting the Fuel
  • 9.2.3. Igniting from a Central Hot Spot
  • 9.2.4. Fast Ignition
  • 9.3. Pitfalls and Problems
  • 9.3.1. Rayleigh Taylor
  • 9.3.2. Symmetry
  • 9.3.3. Laser-Plasma Instabilities
  • 10. Experimental Astrophysics
  • 10.1. Scaling in Hydrodynamic Systems
  • 10.2. A Thorough Example: Interface Instabilities in Type II Supernovae
  • 10.2.1. The Astrophysical Context for Type II Supernovae
  • 10.2.2. The Scaling Problem for Interface Instabilities in Supernovae
  • 10.2.3. Experiments on Interface Instabilities in Type II Supernovae
  • 10.3. A Second Example: Cloud-Crushing Interactions
  • 10.4. Scaling in Radiation Hydrodynamic Systems
  • 10.5. Radiative Astrophysical Jets: Context and Scaling
  • 10.5.1. The Context for Jets in Astrophysics
  • 10.5.2. Scaling from Radiative Astrophysical Jets to the Laboratory
  • 10.5.3. Radiative Jet Experiments
  • 11. Relativistic High-Energy-Density Systems
  • 11.1. Development of Ultrafast Lasers
  • 11.2. Single-Electron Motion in Intense Electromagnetic Fields
  • 11.3. Initiating Relativistic Laser-Plasma Interactions
  • 11.4. Absorption Mechanisms
  • 11.5. Harmonic Generation
  • 11.6. Relativistic Self-Focusing and Induced Transparency
  • 11.7. Particle Acceleration
  • 11.7.1. Acceleration Within Plasmas
  • 11.7.2. Acceleration by Surface Potentials on Solid Targets
  • 11.7.3. Acceleration by Coulomb Explosions
  • 11.8. Hole Drilling and Collisionless Shocks
  • 11.9. Other Phenomena
  • 12. Appendix A: Constants, Acronyms, and Standard Variables
  • 13. Appendix B: Sample Mathematica Code
  • 14. Appendix C: A List of the Homework Problems
  • Index