Comets and the origin and evolution of life /
Saved in:
Edition: | 2nd ed. |
---|---|
Imprint: | Berlin : Springer-Verlag, 2006. |
Description: | 1 online resource (xvi, 346 p.) : ill. (some col.) |
Language: | English |
Series: | Advances in astrobiology and biogeophysics, 1610-8957 Advances in astrobiology and biogeophysics. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/8879864 |
Table of Contents:
- 1. Comets and the origin and evolution of life / J. OroĢ, A. Lazcano, P. Ehrenfreund
- 1.1. Introduction
- 1.2. Comets and the origin on life : an idea with a long history
- 1.3. Chemical evolution of cometary nuclei
- 1.4. The collisional history of the early Solar System
- 1.5. A cometary origin for the terrestrial volatiles?
- 1.6. Comets and prebiotic synthesis
- 1.7. Cometary collisions and biological evolution
- References
- 2. The origin of the atmosphere and of the oceans / A. Delsemme
- 2.1. Introduction
- 2.2. Hypothesis of the volcanic origin
- 2.2.1. The missing primary atmosphere
- 2.2.2. The origin of the Solar System
- 2.3. Existence of accretion disks
- 2.4. Numerical models for a protosolar accretion disk
- 2.5. The chondrites as clues on planetary formation
- 2.6. From dust to planets
- 2.7. Temperature history f the Earth's material
- 2.8. Thermochemical equilibrium in solar nebula
- 2.9. Discussion : was the Earth outgassed?
- 2.10. Formation of the giant planets
- 2.11. Orbital diffusion of comets
- 2.12. Chronology
- 2.13. Chronology discussion
- 2.14. Observational confirmations
- 2.14.1. Cratering record
- 2.14.2. Geochemistry
- 2.14.3. Geochemical model
- 2.14.4. Noble gases
- 2.14.5. Deuterium
- 2.15. Nature of the early atmosphere
- 2.16. Prebiotic organic syntheses
- 2.17. Summary
- 2.17.1. Verified predictions of the model
- 2.17.2. Unverified predictions of the model
- 2.18. Conclusion
- References.
- 3. Cometary micrometeorites in planetology, exobiology, and early climatology / M. Maurette
- 3.1. Introduction
- 3.2. Dark micrometeorites in blue ices : relationships with hydrous-carbonaceous chondrites
- 3.3. Formation of the Earth's atmosphere : previous scenarios
- 3.3.1. Volcanism, nebular gases, and comets
- 3.3.2. A wrong neon in the giant asteroid?
- 3.4. The micrometeoritic "purity" of the Earth's atmosphere
- 3.4.1. Concentrations of volatiles in Antarctic micrometeorites
- 3.4.2. The micrometeoritic "purity" of the Earth's atmosphere
- 3.5. Formation of the post-lunar Earth's atmosphere
- 3.5.1. An accretion formula born with the Moon
- 3.5.2. Total amounts of micrometeoritic volatiles in the post-lunar atmosphere
- 3.6. Micrometeoritic siderophile elements in planetology
- 3.6.1. Micrometeoritic iridium in the Earth's mantle
- 3.6.2. A difficult extrapolation to the Moon and Mars
- 3.7. Micrometeoritic sulfur and ferrihydrite in exobiology
- 3.7.1. Micrometeoritic sulfur and the "worlds" of iron sulfides and thioesters
- 3.7.2. Ferrihydrite in unmelted and melted micrometeorites
- 3.8. A post-lunar micrometeoritic greenhouse effect?
- 3.9. Controversies about the parent bodies of micrometeorites
- 3.10. From prospects to unsolved problems
- References.
- 4. Macromolecules : from star-forming regions of comets to the origins of life / W.F. Huebner, Lewis E. Snyder
- 4.1. Introduction
- 4.2. Interstellar ices
- 4.3. Laboratory simulations
- 4.4. Observations from massive star-forming regions
- 4.4.1. Current research on macromolecules in HMCs and comets
- 4.4.2. Sgr B2(N-LMH)
- 4.4.3. Other sources
- 4.4.4. Comets
- 4.5. Summary and prognosis
- References
- 5. Impact delivery of prebiotic organic matter to planetary surfaces / E. Pierazzo, C.F. Chyba
- 5.1. Introduction
- 5.2. Sources of organic material
- 5.3. Hydrocode simulations
- 5.4. Earth : significant delivery
- 5.5. Mars : balancing factors
- 5.6. Europa : impactor loss
- 5.7. Amino acids on the Moon : impact delivery?
- 5.8. Summary and conclusions
- References.
- 6. Comets and prebiotic organic molecules on early Earth / C.F. Chyba, K.P. Hand
- 6.1. The uninhabitable habitable zone
- 6.1.1. The habitable zone and liquid water
- 6.1.2. Are the Earth's oceans extraterrestrial?
- 6.1.3. D/H ratios and noble gas evidence
- 6.2. The time window for the origin of life
- 6.2.1. Frustration of the origin of life
- 6.2.2. Microfossils and stromatolites
- 6.2.3. Molecular biomarkers
- 6.2.4. Carbon isotope fractionation
- 6.3. Endogenous production of prebiotic organic molecules
- 6.3.1. Nature of the early atmosphere
- 6.3.2. Energy sources and atmospheric organic production
- 6.3.3. Organic production at hydrothermal vents
- 6.4. The lunar cratering record
- 6.4.1. A terminal lunar cataclysm?
- 6.4.2. Implications for the mass flux on early Earth
- 6.5. Impact delivery of intact exogenous organics
- 6.5.1. Interplanetary dust particles and micrometeorites
- 6.5.2. Interstellar dust
- 6.5.3. Meteorites
- 6.5.4. Catastrophic airbursts
- 6.5.5. Big impacts
- 6.6. Atmospheric shock synthesis of organic molecules
- 6.6.1. Shocks form meteors
- 6.6.2. Shock from airburst
- 6.6.3. Shock from giant impact plumes
- 6.7. Postimpact recombination
- 6.8. Amino acids at the K/T boundary
- 6.9. An inventory of organic production on early Earth
- 6.10. Organic sinks and concentrations
- 6.11. Prebiotic organics on the early Earth
- References.
- 7. Impacts and the early evolution of life / Kevin Zahnle, Norman H. Sleep
- 7.1. Prologue
- 7.2. Introduction
- 7.3. The lunar record
- 7.3.1. Energies of basin-forming impacts
- 7.3.2. Crustal contamination by chondrites
- 7.3.3. Chronology of the late bombardment
- 7.4. The late bombardment on the Earth
- 7.4.1. Impactor mass distribution
- 7.4.2. Scaling the lunar impact record on the Earth
- 7.5. Environmental effects of large impacts on the Earth
- 7.5.1. An ocean vaporizing impact
- 7.5.2. Imbrium on the Earth
- 7.5.3. Evolutionary filters
- 7.6. The late bombardment on Mars
- 7.6.1. Environmental effects of large impacts on Mars
- 7.6.2. Local panspermia
- 7.7. Conclusions
- 7.8. Epilogue
- References
- 8. Extraterrestrial impact episodes and Archaean to early proterozoic (3.8-2.4 Ga) habitats of life / A. Glikson
- 8.1. Introduction
- 8.2. PRE-3.8-Ga events
- 8.3. Post-3.8-Ga extraterrestrial impacts
- 8.4. Archaean to early proterozoic impacts, Pilbara, and Kaapvaal cratons
- 8.4.1. About 3.6-Ga impact cluster
- 8.4.2. About 3.26-3.225-Ga asteroid bombardment
- 8.4.3. About 2.6.-2.4-Ga impact clusters and associated tsunami
- 8.5. Possible and demonstrated connections between extraterrestrial impacts and habitats of life
- References.
- 9. The contemporary hazard of comet impacts / D. Morrison
- 9.1. Introduction
- 9.2. Impactor population
- 9.3. Nature of the hazard
- 9.3.1. Penetration through the atmosphere
- 9.3.2. Globally catastrophic impacts
- 9.3.3. Threshold for a globally catastrophic climate perturbation
- 9.4. Hazard analysis
- 9.5. Risk reduction and mitigation
- 9.5.1. Impact prediction
- 9.5.2. Deflection or destruction
- 9.5.3. The challenge of comets
- 9.6. Summary and conclusions
- References
- 10. The conditions for liquid water in cometary nuclei / M. Podolak, D. Prialnik
- 10.1. Introduction
- 10.2. Reconsidering internal heat sources
- 10.2.1. Radioactive heating
- 10.2.2. Amorphous-crystalline transition
- 10.3. Cooling mechanisms
- 10.3.1. Thermal diffusivity
- 10.4. Simple physics
- 10.4.1. Energy considerations
- 10.4.2. Timescales
- 10.5. Numerical models
- 10.6. What further studies may show
- References.
- 11. Spacecraft missions to comets / J. Kissel, F.R. Krueger
- 11.1. Overview
- 11.2. The relevance for issues of the origin of life
- 11.3. Space missions to comets
- 11.4. Results and expectations
- 11.4.1. The measurements at Halley
- 11.4.2. Current missions
- 11.4.3. Future missions
- 11.5. Conclusions
- 12. Interstellar and cometary dust in relation to the origin of life / F.R. Krueger, J. Kissel
- 12.1. Firs in situ chemical analysis of interstellar dust
- 12.1.1. Quinone derivatives as main organic component
- 12.1.2. Hydrated "dirty" PAHs as products of radiative chemistry in nebulae
- 12.1.3. Possible thermochemical implications for the accretion process to comets
- 12.2. New in situ analysis of cometary dust at p/Wild-2
- 12.2.1. Corroboration of the cometary dust prevalence of nitrogen chemistry
- 12.2.2. Precursors of amino acids, sugars, and some other building blocks in cosmic dust
- 12.3. Combined scenario of origin of life with both dust types
- 12.3.1. Hydrolysis mechanisms of cometary dust in water
- 12.3.2. Some necessary conditions for systemic chemical self-organization
- 12.3.3. The question of redox catalysis needed
- 12.3.4. Possibilities and limitations of heterocatalysis by mineral surfaces
- 12.3.5. Interstellar dust and the "PQQ-enigma" for catalysis
- 12.4. Conclusions and further goals
- References.