Comets and the origin and evolution of life /

Saved in:
Bibliographic Details
Edition:2nd ed.
Imprint:Berlin : Springer-Verlag, 2006.
Description:1 online resource (xvi, 346 p.) : ill. (some col.)
Language:English
Series:Advances in astrobiology and biogeophysics, 1610-8957
Advances in astrobiology and biogeophysics.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8879864
Hidden Bibliographic Details
Other authors / contributors:Thomas, Paul J.
ISBN:9783540330882
3540330887
9786610615346
6610615349
3540330860 (Cloth)
9783540330868 (Cloth)
Notes:Includes bibliographical references and index.
Description based on print version record.
Other form:Print version: Comets and the origin and evolution of life. 2nd ed. Berlin : Springer-Verlag, 2006 3540330860 9783540330868
Table of Contents:
  • 1. Comets and the origin and evolution of life / J. OroĢ, A. Lazcano, P. Ehrenfreund
  • 1.1. Introduction
  • 1.2. Comets and the origin on life : an idea with a long history
  • 1.3. Chemical evolution of cometary nuclei
  • 1.4. The collisional history of the early Solar System
  • 1.5. A cometary origin for the terrestrial volatiles?
  • 1.6. Comets and prebiotic synthesis
  • 1.7. Cometary collisions and biological evolution
  • References
  • 2. The origin of the atmosphere and of the oceans / A. Delsemme
  • 2.1. Introduction
  • 2.2. Hypothesis of the volcanic origin
  • 2.2.1. The missing primary atmosphere
  • 2.2.2. The origin of the Solar System
  • 2.3. Existence of accretion disks
  • 2.4. Numerical models for a protosolar accretion disk
  • 2.5. The chondrites as clues on planetary formation
  • 2.6. From dust to planets
  • 2.7. Temperature history f the Earth's material
  • 2.8. Thermochemical equilibrium in solar nebula
  • 2.9. Discussion : was the Earth outgassed?
  • 2.10. Formation of the giant planets
  • 2.11. Orbital diffusion of comets
  • 2.12. Chronology
  • 2.13. Chronology discussion
  • 2.14. Observational confirmations
  • 2.14.1. Cratering record
  • 2.14.2. Geochemistry
  • 2.14.3. Geochemical model
  • 2.14.4. Noble gases
  • 2.14.5. Deuterium
  • 2.15. Nature of the early atmosphere
  • 2.16. Prebiotic organic syntheses
  • 2.17. Summary
  • 2.17.1. Verified predictions of the model
  • 2.17.2. Unverified predictions of the model
  • 2.18. Conclusion
  • References.
  • 3. Cometary micrometeorites in planetology, exobiology, and early climatology / M. Maurette
  • 3.1. Introduction
  • 3.2. Dark micrometeorites in blue ices : relationships with hydrous-carbonaceous chondrites
  • 3.3. Formation of the Earth's atmosphere : previous scenarios
  • 3.3.1. Volcanism, nebular gases, and comets
  • 3.3.2. A wrong neon in the giant asteroid?
  • 3.4. The micrometeoritic "purity" of the Earth's atmosphere
  • 3.4.1. Concentrations of volatiles in Antarctic micrometeorites
  • 3.4.2. The micrometeoritic "purity" of the Earth's atmosphere
  • 3.5. Formation of the post-lunar Earth's atmosphere
  • 3.5.1. An accretion formula born with the Moon
  • 3.5.2. Total amounts of micrometeoritic volatiles in the post-lunar atmosphere
  • 3.6. Micrometeoritic siderophile elements in planetology
  • 3.6.1. Micrometeoritic iridium in the Earth's mantle
  • 3.6.2. A difficult extrapolation to the Moon and Mars
  • 3.7. Micrometeoritic sulfur and ferrihydrite in exobiology
  • 3.7.1. Micrometeoritic sulfur and the "worlds" of iron sulfides and thioesters
  • 3.7.2. Ferrihydrite in unmelted and melted micrometeorites
  • 3.8. A post-lunar micrometeoritic greenhouse effect?
  • 3.9. Controversies about the parent bodies of micrometeorites
  • 3.10. From prospects to unsolved problems
  • References.
  • 4. Macromolecules : from star-forming regions of comets to the origins of life / W.F. Huebner, Lewis E. Snyder
  • 4.1. Introduction
  • 4.2. Interstellar ices
  • 4.3. Laboratory simulations
  • 4.4. Observations from massive star-forming regions
  • 4.4.1. Current research on macromolecules in HMCs and comets
  • 4.4.2. Sgr B2(N-LMH)
  • 4.4.3. Other sources
  • 4.4.4. Comets
  • 4.5. Summary and prognosis
  • References
  • 5. Impact delivery of prebiotic organic matter to planetary surfaces / E. Pierazzo, C.F. Chyba
  • 5.1. Introduction
  • 5.2. Sources of organic material
  • 5.3. Hydrocode simulations
  • 5.4. Earth : significant delivery
  • 5.5. Mars : balancing factors
  • 5.6. Europa : impactor loss
  • 5.7. Amino acids on the Moon : impact delivery?
  • 5.8. Summary and conclusions
  • References.
  • 6. Comets and prebiotic organic molecules on early Earth / C.F. Chyba, K.P. Hand
  • 6.1. The uninhabitable habitable zone
  • 6.1.1. The habitable zone and liquid water
  • 6.1.2. Are the Earth's oceans extraterrestrial?
  • 6.1.3. D/H ratios and noble gas evidence
  • 6.2. The time window for the origin of life
  • 6.2.1. Frustration of the origin of life
  • 6.2.2. Microfossils and stromatolites
  • 6.2.3. Molecular biomarkers
  • 6.2.4. Carbon isotope fractionation
  • 6.3. Endogenous production of prebiotic organic molecules
  • 6.3.1. Nature of the early atmosphere
  • 6.3.2. Energy sources and atmospheric organic production
  • 6.3.3. Organic production at hydrothermal vents
  • 6.4. The lunar cratering record
  • 6.4.1. A terminal lunar cataclysm?
  • 6.4.2. Implications for the mass flux on early Earth
  • 6.5. Impact delivery of intact exogenous organics
  • 6.5.1. Interplanetary dust particles and micrometeorites
  • 6.5.2. Interstellar dust
  • 6.5.3. Meteorites
  • 6.5.4. Catastrophic airbursts
  • 6.5.5. Big impacts
  • 6.6. Atmospheric shock synthesis of organic molecules
  • 6.6.1. Shocks form meteors
  • 6.6.2. Shock from airburst
  • 6.6.3. Shock from giant impact plumes
  • 6.7. Postimpact recombination
  • 6.8. Amino acids at the K/T boundary
  • 6.9. An inventory of organic production on early Earth
  • 6.10. Organic sinks and concentrations
  • 6.11. Prebiotic organics on the early Earth
  • References.
  • 7. Impacts and the early evolution of life / Kevin Zahnle, Norman H. Sleep
  • 7.1. Prologue
  • 7.2. Introduction
  • 7.3. The lunar record
  • 7.3.1. Energies of basin-forming impacts
  • 7.3.2. Crustal contamination by chondrites
  • 7.3.3. Chronology of the late bombardment
  • 7.4. The late bombardment on the Earth
  • 7.4.1. Impactor mass distribution
  • 7.4.2. Scaling the lunar impact record on the Earth
  • 7.5. Environmental effects of large impacts on the Earth
  • 7.5.1. An ocean vaporizing impact
  • 7.5.2. Imbrium on the Earth
  • 7.5.3. Evolutionary filters
  • 7.6. The late bombardment on Mars
  • 7.6.1. Environmental effects of large impacts on Mars
  • 7.6.2. Local panspermia
  • 7.7. Conclusions
  • 7.8. Epilogue
  • References
  • 8. Extraterrestrial impact episodes and Archaean to early proterozoic (3.8-2.4 Ga) habitats of life / A. Glikson
  • 8.1. Introduction
  • 8.2. PRE-3.8-Ga events
  • 8.3. Post-3.8-Ga extraterrestrial impacts
  • 8.4. Archaean to early proterozoic impacts, Pilbara, and Kaapvaal cratons
  • 8.4.1. About 3.6-Ga impact cluster
  • 8.4.2. About 3.26-3.225-Ga asteroid bombardment
  • 8.4.3. About 2.6.-2.4-Ga impact clusters and associated tsunami
  • 8.5. Possible and demonstrated connections between extraterrestrial impacts and habitats of life
  • References.
  • 9. The contemporary hazard of comet impacts / D. Morrison
  • 9.1. Introduction
  • 9.2. Impactor population
  • 9.3. Nature of the hazard
  • 9.3.1. Penetration through the atmosphere
  • 9.3.2. Globally catastrophic impacts
  • 9.3.3. Threshold for a globally catastrophic climate perturbation
  • 9.4. Hazard analysis
  • 9.5. Risk reduction and mitigation
  • 9.5.1. Impact prediction
  • 9.5.2. Deflection or destruction
  • 9.5.3. The challenge of comets
  • 9.6. Summary and conclusions
  • References
  • 10. The conditions for liquid water in cometary nuclei / M. Podolak, D. Prialnik
  • 10.1. Introduction
  • 10.2. Reconsidering internal heat sources
  • 10.2.1. Radioactive heating
  • 10.2.2. Amorphous-crystalline transition
  • 10.3. Cooling mechanisms
  • 10.3.1. Thermal diffusivity
  • 10.4. Simple physics
  • 10.4.1. Energy considerations
  • 10.4.2. Timescales
  • 10.5. Numerical models
  • 10.6. What further studies may show
  • References.
  • 11. Spacecraft missions to comets / J. Kissel, F.R. Krueger
  • 11.1. Overview
  • 11.2. The relevance for issues of the origin of life
  • 11.3. Space missions to comets
  • 11.4. Results and expectations
  • 11.4.1. The measurements at Halley
  • 11.4.2. Current missions
  • 11.4.3. Future missions
  • 11.5. Conclusions
  • 12. Interstellar and cometary dust in relation to the origin of life / F.R. Krueger, J. Kissel
  • 12.1. Firs in situ chemical analysis of interstellar dust
  • 12.1.1. Quinone derivatives as main organic component
  • 12.1.2. Hydrated "dirty" PAHs as products of radiative chemistry in nebulae
  • 12.1.3. Possible thermochemical implications for the accretion process to comets
  • 12.2. New in situ analysis of cometary dust at p/Wild-2
  • 12.2.1. Corroboration of the cometary dust prevalence of nitrogen chemistry
  • 12.2.2. Precursors of amino acids, sugars, and some other building blocks in cosmic dust
  • 12.3. Combined scenario of origin of life with both dust types
  • 12.3.1. Hydrolysis mechanisms of cometary dust in water
  • 12.3.2. Some necessary conditions for systemic chemical self-organization
  • 12.3.3. The question of redox catalysis needed
  • 12.3.4. Possibilities and limitations of heterocatalysis by mineral surfaces
  • 12.3.5. Interstellar dust and the "PQQ-enigma" for catalysis
  • 12.4. Conclusions and further goals
  • References.