Averaging methods in nonlinear dynamical systems /
Saved in:
Author / Creator: | Sanders, J. A. (Jan A.) |
---|---|
Edition: | 2nd ed. |
Imprint: | New York : Springer, c2007. |
Description: | 1 online resource (xxi, 431 p.) : ill. |
Language: | English |
Series: | Applied mathematical sciences (Springer-Verlag New York Inc.) ; v. 59 Applied mathematical sciences (Springer-Verlag New York Inc.) ; v. 59. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/8883107 |
Table of Contents:
- 1. Basic Material and Asymptotics
- 1.1. Introduction
- 1.2. Existence and Uniqueness
- 1.3. The Gronwall Lemma
- 1.4. Concepts of Asymptotic Approximation
- 1.5. Naive Formulation of Perturbation Problems
- 1.6. Reformulation in the Standard Form
- 1.7. The Standard Form in the Quasilinear Case
- 2. Averaging: the Periodic Case
- 2.1. Introduction
- 2.2. Van der Pol Equation
- 2.3. A Linear Oscillator with Frequency Modulation
- 2.4. One Degree of Freedom Hamiltonian System
- 2.5. The Necessity of Restricting the Interval of Time
- 2.6. Bounded Solutions and a Restricted Time Scale of Validity
- 2.7. Counter Example of Crude Averaging
- 2.8. Two Proofs of First-Order Periodic Averaging
- 2.9. Higher-Order Periodic Averaging and Trade-Off
- 2.9.1. Higher-Order Periodic Averaging
- 2.9.2. Estimates on Longer Time Intervals
- 2.9.3. Modified Van der Pol Equation
- 2.9.4. Periodic Orbit of the Van der Pol Equation
- 3. Methodology of Averaging
- 3.1. Introduction
- 3.2. Handling the Averaging Process
- 3.2.1. Lie Theory for Matrices
- 3.2.2. Lie Theory for Autonomous Vector Fields
- 3.2.3. Lie Theory for Periodic Vector Fields
- 3.2.4. Solving the Averaged Equations
- 3.3. Averaging Periodic Systems with Slow Time Dependence
- 3.3.1. Pendulum with Slowly Varying Length
- 3.4. Unique Averaging
- 3.5. Averaging and Multiple Time Scale Methods
- 4. Averaging: the General Case
- 4.1. Introduction
- 4.2. Basic Lemmas; the Periodic Case
- 4.3. General Averaging
- 4.4. Linear Oscillator with Increasing Damping
- 4.5. Second-Order Averaging
- 4.5.1. Example of Second-Order Averaging
- 4.6. Almost-Periodic Vector Fields
- 4.6.1. Example
- 5. Attraction
- 5.1. Introduction
- 5.2. Equations with Linear Attraction
- 5.3. Examples of Regular Perturbations with Attraction
- 5.3.1. Two Species
- 5.3.2. A perturbation theorem
- 5.3.3. Two Species, Continued
- 5.4. Examples of Averaging with Attraction
- 5.4.1. Anharmonic Oscillator with Linear Damping
- 5.4.2. Duffing's Equation with Damping and Forcing
- 5.5. Theory of Averaging with Attraction
- 5.6. An Attractor in the Original Equation
- 5.7. Contracting Maps
- 5.8. Attracting Limit-Cycles
- 5.9. Additional Examples
- 5.9.1. Perturbation of the Linear Terms
- 5.9.2. Damping on Various Time Scales
- 6. Periodic Averaging and Hyperbolicity
- 6.1. Introduction
- 6.2. Coupled Duffing Equations, An Example
- 6.3. Rest Points and Periodic Solutions
- 6.3.1. The Regular Case
- 6.3.2. The Averaging Case
- 6.4. Local Conjugacy and Shadowing
- 6.4.1. The Regular Case
- 6.4.2. The Averaging Case
- 6.5. Extended Error Estimate for Solutions Approaching an Attractor
- 6.6. Conjugacy and Shadowing in a Dumbbell-Shaped Neighborhood
- 6.6.1. The Regular Case
- 6.6.2. The Averaging Case
- 6.7. Extension to Larger Compact Sets
- 6.8. Extensions and Degenerate Cases
- 7. Averaging over Angles
- 7.1. Introduction
- 7.2. The Case of Constant Frequencies
- 7.3. Total Resonances
- 7.4. The Case of Variable Frequencies
- 7.5. Examples
- 7.5.1. Einstein Pendulum
- 7.5.2. Nonlinear Oscillator
- 7.5.3. Oscillator Attached to a Flywheel
- 7.6. Secondary (Not Second Order) Averaging
- 7.7. Formal Theory
- 7.8. Slowly Varying Frequency
- 7.8.1. Einstein Pendulum
- 7.9. Higher Order Approximation in the Regular Case
- 7.10. Generalization of the Regular Case
- 7.10.1. Two-Body Problem with Variable Mass
- 8. Passage Through Resonance
- 8.1. Introduction
- 8.2. The Inner Expansion
- 8.3. The Outer Expansion
- 8.4. The Composite Expansion
- 8.5. Remarks on Higher-Dimensional Problems
- 8.5.1. Introduction
- 8.5.2. The Case of More Than One Angle
- 8.5.3. Example of Resonance Locking
- 8.5.4. Example of Forced Passage through Resonance
- 8.6. Inner and Outer Expansion
- 8.7. Two Examples
- 8.7.1. The Forced Mathematical Pendulum
- 8.7.2. An Oscillator Attached to a Fly-Wheel
- 9. From Averaging to Normal Forms
- 9.1. Classical, or First-Level, Normal Forms
- 9.1.1. Differential Operators Associated with a Vector Field
- 9.1.2. Lie Theory
- 9.1.3. Normal Form Styles
- 9.1.4. The Semisimple Case
- 9.1.5. The Nonsemisimple Case
- 9.1.6. The Transpose or Inner Product Normal Form Style
- 9.1.7. The sl[subscript 2] Normal Form
- 9.2. Higher Level Normal Forms
- 10. Hamiltonian Normal Form Theory
- 10.1. Introduction
- 10.1.1. The Hamiltonian Formalism
- 10.1.2. Local Expansions and Rescaling
- 10.1.3. Basic Ingredients of the Flow
- 10.2. Normalization of Hamiltonians around Equilibria
- 10.2.1. The Generating Function
- 10.2.2. Normal Form Polynomials
- 10.3. Canonical Variables at Resonance
- 10.4. Periodic Solutions and Integrals
- 10.5. Two Degrees of Freedom, General Theory
- 10.5.1. Introduction
- 10.5.2. The Linear Flow
- 10.5.3. Description of the w[subscript 1]: w[subscript 2]-Resonance in Normal Form
- 10.5.4. General Aspects of the k : l-Resonance, k [not equal] l
- 10.6. Two Degrees of Freedom, Examples
- 10.6.1. The 1 : 2-Resonance
- 10.6.2. The Symmetric 1 : 1-Resonance
- 10.6.3. The 1 : 3-Resonance
- 10.6.4. Higher-order Resonances
- 10.7. Three Degrees of Freedom, General Theory
- 10.7.1. Introduction
- 10.7.2. The Order of Resonance
- 10.7.3. Periodic Orbits and Integrals
- 10.7.4. The w[subscript 1]: w[subscript 2]: w[subscript 3]-Resonance
- 10.7.5. The Kernel of ad(H[superscript 0])
- 10.8. Three Degrees of Freedom, Examples
- 10.8.1. The 1 : 2 : 1-Resonance
- 10.8.2. Integrability of the 1 : 2 : 1 Normal Form
- 10.8.3. The 1 : 2 : 2-Resonance
- 10.8.4. Integrability of the 1 : 2 : 2 Normal Form
- 10.8.5. The 1 : 2 : 3-Resonance
- 10.8.6. Integrability of the 1 : 2 : 3 Normal Form
- 10.8.7. The 1 : 2 : 4-Resonance
- 10.8.8. Integrability of the 1 : 2 : 4 Normal Form
- 10.8.9. Summary of Integrability of Normalized Systems
- 10.8.10. Genuine Second-Order Resonances
- 11. Classical (First-Level) Normal Form Theory
- 11.1. Introduction
- 11.2. Leibniz Algebras and Representations
- 11.3. Cohomology
- 11.4. A Matter of Style
- 11.4.1. Example: Nilpotent Linear Part in R[superscript 2]
- 11.5. Induced Linear Algebra
- 11.5.1. The Nilpotent Case
- 11.5.2. Nilpotent Example Revisited
- 11.5.3. The Nonsemisimple Case
- 11.6. The Form of the Normal Form, the Description Problem
- 12. Nilpotent (Classical) Normal Form
- 12.1. Introduction
- 12.2. Classical Invariant Theory
- 12.3. Transvectants
- 12.4. A Remark on Generating Functions
- 12.5. The Jacobson-Morozov Lemma
- 12.6. Description of the First Level Normal Forms
- 12.6.1. The N[subscript 2] Case
- 12.6.2. The N[subscript 3] Case
- 12.6.3. The N[subscript 4] Case
- 12.6.4. Intermezzo: How Free?
- 12.6.5. The N[subscript 2,2] Case
- 12.6.6. The N[subscript 5] Case
- 12.6.7. The N[subscript 2,3] Case
- 12.7. Description of the First Level Normal Forms
- 12.7.1. The N[subscript 2,2,2] Case
- 12.7.2. The N[subscript 3,3] Case
- 12.7.3. The N[subscript 3,4] Case
- 12.7.4. Concluding Remark
- 13. Higher-Level Normal Form Theory
- 13.1. Introduction
- 13.1.1. Some Standard Results
- 13.2. Abstract Formulation of Normal Form Theory
- 13.3. The Hilbert-Poincare Series of a Spectral Sequence
- 13.4. The Anharmonic Oscillator
- 13.4.1. Case A[superscript r]: [Characters not reproducible] Is Invertible
- 13.4.2. Case A[superscript r]: [Characters not reproducible] Is Not Invertible, but [Characters not reproducible] Is
- 13.4.3. The m-adic Approach
- 13.5. The Hamiltonian 1 : 2-Resonance
- 13.6. Averaging over Angles
- 13.7. Definition of Normal Form
- 13.8. Linear Convergence, Using the Newton Method
- 13.9. Quadratic Convergence, Using the Dynkin Formula
- A. The History of the Theory of Averaging
- A.1. Early Calculations and Ideas
- A.2. Formal Perturbation Theory and Averaging
- A.2.1. Jacobi
- A.2.2. Poincare
- A.2.3. Van der Pol
- A.3. Proofs of Asymptotic Validity
- B. A 4-Dimensional Example of Hopf Bifurcation
- B.1. Introduction
- B.2. The Model Problem
- B.3. The Linear Equation
- B.4. Linear Perturbation Theory
- B.5. The Nonlinear Problem
- C. Invariant Manifolds by Averaging
- C.1. Introduction
- C.2. Deforming a Normally Hyperbolic Manifold
- C.3. Tori by Bogoliubov-Mitropolsky-Hale Continuation
- C.4. The Case of Parallel Flow
- C.5. Tori Created by Neimark-Sacker Bifurcation
- D. Celestial Mechanics
- D.1. Introduction
- D.2. The Unperturbed Kepler Problem
- D.3. Perturbations
- D.4. Motion Around an 'Oblate Planet'
- D.5. Harmonic Oscillator Formulation
- D.6. First Order Averaging
- D.7. A Dissipative Force: Atmospheric Drag
- D.8. Systems with Mass Loss or Variable G
- D.9. Two-body System with Increasing Mass
- E. On Averaging Methods for Partial Differential Equations
- E.1. Introduction
- E.2. Averaging of Operators
- E.2.1. Averaging in a Banach Space
- E.2.2. Averaging a Time-Dependent Operator
- E.2.3. A Time-Periodic Advection-Diffusion Problem
- E.2.4. Nonlinearities, Boundary Conditions and Sources
- E.3. Hyperbolic Operators with a Discrete Spectrum
- E.3.1. Averaging Results by Buitelaar
- E.3.2. Galerkin Averaging Results
- E.3.3. Example: the Cubic Klein-Gordon Equation
- E.3.4. Example: Wave Equation with Many Resonances
- E.3.5. Example: the Keller-Kogelman Problem
- E.4. Discussion
- References
- Index of Definitions & Descriptions
- General Index