Averaging methods in nonlinear dynamical systems /

Saved in:
Bibliographic Details
Author / Creator:Sanders, J. A. (Jan A.)
Edition:2nd ed.
Imprint:New York : Springer, c2007.
Description:1 online resource (xxi, 431 p.) : ill.
Language:English
Series:Applied mathematical sciences (Springer-Verlag New York Inc.) ; v. 59
Applied mathematical sciences (Springer-Verlag New York Inc.) ; v. 59.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8883107
Hidden Bibliographic Details
Other authors / contributors:Verhulst, F. (Ferdinand), 1939-
Murdock, James A.
ISBN:9780387489162
0387489169
9780387489186 (e-ISBN)
0387489185 (e-ISBN)
9786611066208
6611066209
Notes:Includes bibliographical references (p. [394]-411) and indexes.
Other form:Print version: Sanders, J.A. (Jan A.). Averaging methods in nonlinear dynamical systems. 2nd ed. New York : Springer, c2007 9780387489162 0387489169
Table of Contents:
  • 1. Basic Material and Asymptotics
  • 1.1. Introduction
  • 1.2. Existence and Uniqueness
  • 1.3. The Gronwall Lemma
  • 1.4. Concepts of Asymptotic Approximation
  • 1.5. Naive Formulation of Perturbation Problems
  • 1.6. Reformulation in the Standard Form
  • 1.7. The Standard Form in the Quasilinear Case
  • 2. Averaging: the Periodic Case
  • 2.1. Introduction
  • 2.2. Van der Pol Equation
  • 2.3. A Linear Oscillator with Frequency Modulation
  • 2.4. One Degree of Freedom Hamiltonian System
  • 2.5. The Necessity of Restricting the Interval of Time
  • 2.6. Bounded Solutions and a Restricted Time Scale of Validity
  • 2.7. Counter Example of Crude Averaging
  • 2.8. Two Proofs of First-Order Periodic Averaging
  • 2.9. Higher-Order Periodic Averaging and Trade-Off
  • 2.9.1. Higher-Order Periodic Averaging
  • 2.9.2. Estimates on Longer Time Intervals
  • 2.9.3. Modified Van der Pol Equation
  • 2.9.4. Periodic Orbit of the Van der Pol Equation
  • 3. Methodology of Averaging
  • 3.1. Introduction
  • 3.2. Handling the Averaging Process
  • 3.2.1. Lie Theory for Matrices
  • 3.2.2. Lie Theory for Autonomous Vector Fields
  • 3.2.3. Lie Theory for Periodic Vector Fields
  • 3.2.4. Solving the Averaged Equations
  • 3.3. Averaging Periodic Systems with Slow Time Dependence
  • 3.3.1. Pendulum with Slowly Varying Length
  • 3.4. Unique Averaging
  • 3.5. Averaging and Multiple Time Scale Methods
  • 4. Averaging: the General Case
  • 4.1. Introduction
  • 4.2. Basic Lemmas; the Periodic Case
  • 4.3. General Averaging
  • 4.4. Linear Oscillator with Increasing Damping
  • 4.5. Second-Order Averaging
  • 4.5.1. Example of Second-Order Averaging
  • 4.6. Almost-Periodic Vector Fields
  • 4.6.1. Example
  • 5. Attraction
  • 5.1. Introduction
  • 5.2. Equations with Linear Attraction
  • 5.3. Examples of Regular Perturbations with Attraction
  • 5.3.1. Two Species
  • 5.3.2. A perturbation theorem
  • 5.3.3. Two Species, Continued
  • 5.4. Examples of Averaging with Attraction
  • 5.4.1. Anharmonic Oscillator with Linear Damping
  • 5.4.2. Duffing's Equation with Damping and Forcing
  • 5.5. Theory of Averaging with Attraction
  • 5.6. An Attractor in the Original Equation
  • 5.7. Contracting Maps
  • 5.8. Attracting Limit-Cycles
  • 5.9. Additional Examples
  • 5.9.1. Perturbation of the Linear Terms
  • 5.9.2. Damping on Various Time Scales
  • 6. Periodic Averaging and Hyperbolicity
  • 6.1. Introduction
  • 6.2. Coupled Duffing Equations, An Example
  • 6.3. Rest Points and Periodic Solutions
  • 6.3.1. The Regular Case
  • 6.3.2. The Averaging Case
  • 6.4. Local Conjugacy and Shadowing
  • 6.4.1. The Regular Case
  • 6.4.2. The Averaging Case
  • 6.5. Extended Error Estimate for Solutions Approaching an Attractor
  • 6.6. Conjugacy and Shadowing in a Dumbbell-Shaped Neighborhood
  • 6.6.1. The Regular Case
  • 6.6.2. The Averaging Case
  • 6.7. Extension to Larger Compact Sets
  • 6.8. Extensions and Degenerate Cases
  • 7. Averaging over Angles
  • 7.1. Introduction
  • 7.2. The Case of Constant Frequencies
  • 7.3. Total Resonances
  • 7.4. The Case of Variable Frequencies
  • 7.5. Examples
  • 7.5.1. Einstein Pendulum
  • 7.5.2. Nonlinear Oscillator
  • 7.5.3. Oscillator Attached to a Flywheel
  • 7.6. Secondary (Not Second Order) Averaging
  • 7.7. Formal Theory
  • 7.8. Slowly Varying Frequency
  • 7.8.1. Einstein Pendulum
  • 7.9. Higher Order Approximation in the Regular Case
  • 7.10. Generalization of the Regular Case
  • 7.10.1. Two-Body Problem with Variable Mass
  • 8. Passage Through Resonance
  • 8.1. Introduction
  • 8.2. The Inner Expansion
  • 8.3. The Outer Expansion
  • 8.4. The Composite Expansion
  • 8.5. Remarks on Higher-Dimensional Problems
  • 8.5.1. Introduction
  • 8.5.2. The Case of More Than One Angle
  • 8.5.3. Example of Resonance Locking
  • 8.5.4. Example of Forced Passage through Resonance
  • 8.6. Inner and Outer Expansion
  • 8.7. Two Examples
  • 8.7.1. The Forced Mathematical Pendulum
  • 8.7.2. An Oscillator Attached to a Fly-Wheel
  • 9. From Averaging to Normal Forms
  • 9.1. Classical, or First-Level, Normal Forms
  • 9.1.1. Differential Operators Associated with a Vector Field
  • 9.1.2. Lie Theory
  • 9.1.3. Normal Form Styles
  • 9.1.4. The Semisimple Case
  • 9.1.5. The Nonsemisimple Case
  • 9.1.6. The Transpose or Inner Product Normal Form Style
  • 9.1.7. The sl[subscript 2] Normal Form
  • 9.2. Higher Level Normal Forms
  • 10. Hamiltonian Normal Form Theory
  • 10.1. Introduction
  • 10.1.1. The Hamiltonian Formalism
  • 10.1.2. Local Expansions and Rescaling
  • 10.1.3. Basic Ingredients of the Flow
  • 10.2. Normalization of Hamiltonians around Equilibria
  • 10.2.1. The Generating Function
  • 10.2.2. Normal Form Polynomials
  • 10.3. Canonical Variables at Resonance
  • 10.4. Periodic Solutions and Integrals
  • 10.5. Two Degrees of Freedom, General Theory
  • 10.5.1. Introduction
  • 10.5.2. The Linear Flow
  • 10.5.3. Description of the w[subscript 1]: w[subscript 2]-Resonance in Normal Form
  • 10.5.4. General Aspects of the k : l-Resonance, k [not equal] l
  • 10.6. Two Degrees of Freedom, Examples
  • 10.6.1. The 1 : 2-Resonance
  • 10.6.2. The Symmetric 1 : 1-Resonance
  • 10.6.3. The 1 : 3-Resonance
  • 10.6.4. Higher-order Resonances
  • 10.7. Three Degrees of Freedom, General Theory
  • 10.7.1. Introduction
  • 10.7.2. The Order of Resonance
  • 10.7.3. Periodic Orbits and Integrals
  • 10.7.4. The w[subscript 1]: w[subscript 2]: w[subscript 3]-Resonance
  • 10.7.5. The Kernel of ad(H[superscript 0])
  • 10.8. Three Degrees of Freedom, Examples
  • 10.8.1. The 1 : 2 : 1-Resonance
  • 10.8.2. Integrability of the 1 : 2 : 1 Normal Form
  • 10.8.3. The 1 : 2 : 2-Resonance
  • 10.8.4. Integrability of the 1 : 2 : 2 Normal Form
  • 10.8.5. The 1 : 2 : 3-Resonance
  • 10.8.6. Integrability of the 1 : 2 : 3 Normal Form
  • 10.8.7. The 1 : 2 : 4-Resonance
  • 10.8.8. Integrability of the 1 : 2 : 4 Normal Form
  • 10.8.9. Summary of Integrability of Normalized Systems
  • 10.8.10. Genuine Second-Order Resonances
  • 11. Classical (First-Level) Normal Form Theory
  • 11.1. Introduction
  • 11.2. Leibniz Algebras and Representations
  • 11.3. Cohomology
  • 11.4. A Matter of Style
  • 11.4.1. Example: Nilpotent Linear Part in R[superscript 2]
  • 11.5. Induced Linear Algebra
  • 11.5.1. The Nilpotent Case
  • 11.5.2. Nilpotent Example Revisited
  • 11.5.3. The Nonsemisimple Case
  • 11.6. The Form of the Normal Form, the Description Problem
  • 12. Nilpotent (Classical) Normal Form
  • 12.1. Introduction
  • 12.2. Classical Invariant Theory
  • 12.3. Transvectants
  • 12.4. A Remark on Generating Functions
  • 12.5. The Jacobson-Morozov Lemma
  • 12.6. Description of the First Level Normal Forms
  • 12.6.1. The N[subscript 2] Case
  • 12.6.2. The N[subscript 3] Case
  • 12.6.3. The N[subscript 4] Case
  • 12.6.4. Intermezzo: How Free?
  • 12.6.5. The N[subscript 2,2] Case
  • 12.6.6. The N[subscript 5] Case
  • 12.6.7. The N[subscript 2,3] Case
  • 12.7. Description of the First Level Normal Forms
  • 12.7.1. The N[subscript 2,2,2] Case
  • 12.7.2. The N[subscript 3,3] Case
  • 12.7.3. The N[subscript 3,4] Case
  • 12.7.4. Concluding Remark
  • 13. Higher-Level Normal Form Theory
  • 13.1. Introduction
  • 13.1.1. Some Standard Results
  • 13.2. Abstract Formulation of Normal Form Theory
  • 13.3. The Hilbert-Poincare Series of a Spectral Sequence
  • 13.4. The Anharmonic Oscillator
  • 13.4.1. Case A[superscript r]: [Characters not reproducible] Is Invertible
  • 13.4.2. Case A[superscript r]: [Characters not reproducible] Is Not Invertible, but [Characters not reproducible] Is
  • 13.4.3. The m-adic Approach
  • 13.5. The Hamiltonian 1 : 2-Resonance
  • 13.6. Averaging over Angles
  • 13.7. Definition of Normal Form
  • 13.8. Linear Convergence, Using the Newton Method
  • 13.9. Quadratic Convergence, Using the Dynkin Formula
  • A. The History of the Theory of Averaging
  • A.1. Early Calculations and Ideas
  • A.2. Formal Perturbation Theory and Averaging
  • A.2.1. Jacobi
  • A.2.2. Poincare
  • A.2.3. Van der Pol
  • A.3. Proofs of Asymptotic Validity
  • B. A 4-Dimensional Example of Hopf Bifurcation
  • B.1. Introduction
  • B.2. The Model Problem
  • B.3. The Linear Equation
  • B.4. Linear Perturbation Theory
  • B.5. The Nonlinear Problem
  • C. Invariant Manifolds by Averaging
  • C.1. Introduction
  • C.2. Deforming a Normally Hyperbolic Manifold
  • C.3. Tori by Bogoliubov-Mitropolsky-Hale Continuation
  • C.4. The Case of Parallel Flow
  • C.5. Tori Created by Neimark-Sacker Bifurcation
  • D. Celestial Mechanics
  • D.1. Introduction
  • D.2. The Unperturbed Kepler Problem
  • D.3. Perturbations
  • D.4. Motion Around an 'Oblate Planet'
  • D.5. Harmonic Oscillator Formulation
  • D.6. First Order Averaging
  • D.7. A Dissipative Force: Atmospheric Drag
  • D.8. Systems with Mass Loss or Variable G
  • D.9. Two-body System with Increasing Mass
  • E. On Averaging Methods for Partial Differential Equations
  • E.1. Introduction
  • E.2. Averaging of Operators
  • E.2.1. Averaging in a Banach Space
  • E.2.2. Averaging a Time-Dependent Operator
  • E.2.3. A Time-Periodic Advection-Diffusion Problem
  • E.2.4. Nonlinearities, Boundary Conditions and Sources
  • E.3. Hyperbolic Operators with a Discrete Spectrum
  • E.3.1. Averaging Results by Buitelaar
  • E.3.2. Galerkin Averaging Results
  • E.3.3. Example: the Cubic Klein-Gordon Equation
  • E.3.4. Example: Wave Equation with Many Resonances
  • E.3.5. Example: the Keller-Kogelman Problem
  • E.4. Discussion
  • References
  • Index of Definitions & Descriptions
  • General Index