Learning from data streams : processing techniques in sensor networks /

Saved in:
Bibliographic Details
Imprint:Berlin ; New York : Springer, 2007.
Description:1 online resource (x, 244 p.) : ill.
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8883797
Hidden Bibliographic Details
Other authors / contributors:Gama, João.
Gaber, Mohamed Medhat.
ISBN:9783540736790
3540736794
3540736786
9783540736783
6611140662
9786611140663
Notes:Electronic book.
Includes bibliographical references and index.
Description based on print version record.
Other form:Learning from data streams : processing techniques in sensor networks.
Description
Summary:

Sensor networks consist of distributed autonomous devices that cooperatively monitor an environment. Sensors are equipped with capacities to store information in memory, process this information and communicate with their neighbors. Processing data streams generated from wireless sensor networks has raised new research challenges over the last few years due to the huge numbers of data streams to be managed continuously and at a very high rate.

The book provides the reader with a comprehensive overview of stream data processing, including famous prototype implementations like the Nile system and the TinyOS operating system. The set of chapters covers the state-of-art in data stream mining approaches using clustering, predictive learning, and tensor analysis techniques, and applying them to applications in security, the natural sciences, and education.

This research monograph delivers to researchers and graduate students the state of the art in data stream processing in sensor networks. The huge bibliography offers an excellent starting point for further reading and future research.

Item Description:Electronic book.
Physical Description:1 online resource (x, 244 p.) : ill.
Bibliography:Includes bibliographical references and index.
ISBN:9783540736790
3540736794
3540736786
9783540736783
6611140662
9786611140663