An introduction to mathematics of emerging biomedical imaging /
Saved in:
Author / Creator: | Ammari, Habib. |
---|---|
Imprint: | Berlin ; New York : Springer, c2008. |
Description: | 1 online resource (x, 198 p.) : ill. |
Language: | English |
Series: | Mathématiques & applications, 1154-483x ; 62 Mathématiques & applications ; 62. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/8885585 |
Table of Contents:
- 1. Biomedical Imaging Modalities
- 1.1. X-Ray Imaging and Computed Tomography
- 1.2. Magnetic Resonance Imaging
- 1.3. Electrical Impedance Tomography
- 1.4. T-Scan Electrical Impedance Imaging System for Anomaly Detection
- 1.5. Electrical and Magnetic Source Imaging
- 1.6. Magnetic Resonance Electrical Impedance Tomography
- 1.7. Impediography
- 1.8. Ultrasound Imaging
- 1.9. Microwave Imaging
- 1.10. Elastic Imaging
- 1.11. Magnetic Resonance Elastography
- 1.12. Optical Tomography
- Part I. Mathematical Tools
- 2. Preliminaries
- 2.1. Special Functions
- 2.2. Sobolev Spaces
- 2.3. Fourier Analysis
- 2.3.1. Shannon's Sampling Theorem
- 2.3.2. Fast Fourier Transform
- 2.4. The Two-Dimensional Radon Transform
- 2.5. The Moore-Penrose Generalized Inverse
- 2.6. Singular Value Decomposition
- 2.7. Compact Operators
- 2.8. Regularization of Ill-Posed Problems
- 2.8.1. Stability
- 2.8.2. The Truncated SVD
- 2.8.3. Tikhonov-Phillips Regularization
- 2.8.4. Regularization by Truncated Iterative Methods
- 2.9. General Image Characteristics
- 2.9.1. Spatial Resolution
- 2.9.2. Signal-To-Noise Ratio
- 3. Layer Potential Techniques
- 3.1. The Laplace Equation
- 3.1.1. Fundamental Solution
- 3.1.2. Layer Potentials
- 3.1.3. Invertibility of [lambda]I-K*[subscript D]
- 3.1.4. Neumann Function
- 3.1.5. Transmission Problem
- 3.2. Helmholtz Equation
- 3.2.1. Fundamental Solution
- 3.2.2. Layer Potentials
- 3.2.3. Transmission Problem
- 3.3. Static Elasticity
- 3.3.1. Fundamental Solution
- 3.3.2. Layer Potentials
- 3.3.3. Transmission Problem
- 3.4. Dynamic Elasticity
- 3.4.1. Radiation Condition
- 3.4.2. Fundamental Solution
- 3.4.3. Layer Potentials
- 3.4.4. Transmission Problem
- 3.5. Modified Stokes System
- 3.5.1. Fundamental Solution
- 3.5.2. Layer Potentials
- 3.5.3. Transmission Problem
- Part II. General Reconstruction Algorithms
- 4. Tomographic Imaging with Non-Diffracting Sources
- 4.1. Imaging Equations of CT and MRI
- 4.1.1. Imaging Equation of CT
- 4.1.2. Imaging Equation of MRI
- 4.2. General Issues of Image Reconstruction
- 4.3. Reconstruction from Fourier Transform Samples
- 4.3.1. Problem Formulation
- 4.3.2. Basic Theory
- 4.4. Reconstruction from Radon Transform Samples
- 4.4.1. The Inverse Radon Transform
- 4.4.2. Fourier Inversion Formula
- 4.4.3. Direct Backprojection Method
- 4.4.4. Filtered Backprojection Reconstruction
- 4.4.5. Noise in Filtered Backprojection Reconstruction
- 5. Tomographic Imaging with Diffracting Sources
- 5.1. Electrical Impedance Tomography
- 5.1.1. Mathematical Model
- 5.1.2. Ill-Conditioning
- 5.1.3. Static Imaging
- 5.1.4. Dynamic Imaging
- 5.1.5. Electrode Model
- 5.2. Ultrasound and Microwave Tomographies
- 5.2.1. Mathematical Model
- 5.2.2. Diffraction Tomography
- 6. Biomagnetic Source Imaging
- 6.1. Mathematical Models
- 6.1.1. The Electric Forward Problem
- 6.1.2. The Magnetic Forward Problem
- 6.2. The Inverse EEG Problem
- 6.3. The Spherical Model in MEG
- Part III. Anomaly Detection Algorithms
- 7. Small Volume Expansions
- 7.1. Conductivity Problem
- 7.1.1. Formal Derivations
- 7.1.2. Polarization Tensor
- 7.2. Helmholtz Equation
- 7.2.1. Formal Derivations
- 7.3. Static Elasticity
- 7.3.1. Formal Derivations
- 7.3.2. Elastic Moment Tensor
- 7.4. Dynamic Elasticity
- 7.5. Modified Stokes System
- 7.6. Nearly Incompressible Bodies
- 7.6.1. Formal Derivations
- 7.6.2. Viscous Moment Tensor
- 7.7. Diffusion Equation
- 8. Imaging Techniques
- 8.1. Projection Type Algorithms
- 8.2. Multiple Signal Classification Type Algorithms
- 8.3. Time-Domain Imaging
- 8.3.1. Fourier- and MUSIC-Type Algorithms
- 8.3.2. Time-Reversal Imaging
- Part IV. Hybrid Imaging Techniques
- 9. Magnetic Resonance Electrical Impedance Tomography
- 9.1. Mathematical Model
- 9.2. J-Substitution Algorithm
- 9.3. The Harmonic Algorithm
- 10. Impediography
- 10.1. Physical Model
- 10.2. Mathematical Model
- 10.3. E-Substitution Algorithm
- 11. Magnetic Resonance Elastography
- 11.1. Mathematical Model
- 11.2. Binary Level Set Algorithm
- References
- Index