Robust numerical methods for singularly perturbed differential equations : convection-diffusion-reaction and flow problems /
Saved in:
Author / Creator: | Roos, Hans-Görg, 1949- |
---|---|
Imprint: | Berlin : Springer, 2008. |
Description: | 1 online resource (xiv, 604 p.) |
Language: | English |
Series: | Springer series in computational mechanics, 0179-3632 ; 24 Springer series in computational mechanics ; 24. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/8887019 |
Table of Contents:
- Notation
- Introduction
- Part I. Ordinary Differential Equations
- 1. The Analytical Behaviour of Solutions
- 1.1. Linear Second-Order Problems Without Turning Points
- 1.1.1. Asymptotic Expansions
- 1.1.2. The Green's Function and Stability Estimates
- 1.1.3. A Priori Estimates for Derivatives and Solution Decomposition
- 1.2. Linear Second-Order Turning-Point Problems
- 1.3. Quasilinear Problems
- 1.4. Linear Higher-Order Problems and Systems
- 1.4.1. Asymptotic Expansions for Higher-Order Problems
- 1.4.2. A Stability Result
- 1.4.3. Systems of Ordinary Differential Equations
- 2. Numerical Methods for Second-Order Boundary Value Problems
- 2.1. Finite Difference Methods on Equidistant Meshes
- 2.1.1. Classical Convergence Theory for Central Differencing
- 2.1.2. Upwind Schemes
- 2.1.3. The Concept of Uniform Convergence
- 2.1.4. Uniformly Convergent Schemes of Higher Order
- 2.1.5. Linear Turning-Point Problems
- 2.1.6. Some Nonlinear Problems
- 2.2. Finite Element Methods on Standard Meshes
- 2.2.1. Basic Results for Standard Finite Element Methods
- 2.2.2. Upwind Finite Elements
- 2.2.3. Stabilized Higher-Order Methods
- 2.2.4. Variational Multiscale and Differentiated Residual Methods
- 2.2.5. Uniformly Convergent Finite Element Methods
- 2.3. Finite Volume Methods
- 2.4. Finite Difference Methods on Layer-adapted Grids
- 2.4.1. Graded Meshes
- 2.4.2. Piecewise Equidistant Meshes
- 2.5. Adaptive Strategies Based on Finite Differences
- Part II. Parabolic Initial-Boundary Value Problems in One Space Dimension
- 1. Introduction
- 2. Analytical Behaviour of Solutions
- 2.1. Existence, Uniqueness, Comparison Principle
- 2.2. Asymptotic Expansions and Bounds on Derivatives
- 3. Finite Difference Methods
- 3.1. First-Order Problems
- 3.1.1. Consistency
- 3.1.2. Stability
- 3.1.3. Convergence in L[subscript 2]
- 3.2. Convection-Diffusion Problems
- 3.2.1. Consistency and Stability
- 3.2.2. Convergence
- 3.3. Polynomial Schemes
- 3.4. Uniformly Convergent Methods
- 3.4.1. Exponential Fitting in Space
- 3.4.2. Layer-Adapted Tensor-Product Meshes
- 3.4.3. Reaction-Diffusion Problems
- 4. Finite Element Methods
- 4.1. Space-Based Methods
- 4.1.1. Polynomial Upwinding
- 4.1.2. Uniformly Convergent Schemes
- 4.1.3. Local Error Estimates
- 4.2. Subcharacteristic-Based Methods
- 4.2.1. SDFEM in Space-Time
- 4.2.2. Explicit Galerkin Methods
- 4.2.3. Eulerian-Lagrangian Methods
- 5. Two Adaptive Methods
- 5.1. Streamline Diffusion Methods
- 5.2. Moving Mesh Methods (r-refinement)
- Part III. Elliptic and Parabolic Problems in Several Space Dimensions
- 1. Analytical Behaviour of Solutions
- 1.1. Classical and Weak Solutions
- 1.2. The Reduced Problem
- 1.3. Asymptotic Expansions and Boundary Layers
- 1.4. A Priori Estimates and Solution Decomposition
- 2. Finite Difference Methods
- 2.1. Finite Difference Methods on Standard Meshes
- 2.1.1. Exponential Boundary Layers
- 2.1.2. Parabolic Boundary Layers
- 2.2. Layer-Adapted Meshes
- 2.2.1. Exponential Boundary Layers
- 2.2.2. Parabolic Layers
- 3. Finite Element Methods
- 3.1. Inverse-Monotonicity-Preserving Methods Based on Finite Volume Ideas
- 3.2. Residual-Based Stabilizations
- 3.2.1. Streamline Diffusion Finite Element Method (SDFEM)
- 3.2.2. Galerkin Least Squares Finite Element Method (GLSFEM)
- 3.2.3. Residual-Free Bubbles
- 3.3. Adding Symmetric Stabilizing Terms
- 3.3.1. Local Projection Stabilization
- 3.3.2. Continuous Interior Penalty Stabilization
- 3.4. The Discontinuous Galerkin Finite Element Method
- 3.4.1. The Primal Formulation for a Reaction-Diffusion Problem
- 3.4.2. A First-Order Hyperbolic Problem
- 3.4.3. dGFEM Error Analysis for Convection-Diffusion Problems
- 3.5. Uniformly Convergent Methods
- 3.5.1. Operator-Fitted Methods
- 3.5.2. Layer-Adapted Meshes
- 3.6. Adaptive Methods
- 3.6.1. Adaptive Finite Element Methods for Non-Singularly Perturbed Elliptic Problems: an Introduction
- 3.6.2. Robust and Semi-Robust Residual Type Error Estimators
- 3.6.3. A Variant of the DWR Method for Streamline Diffusion
- 4. Time-Dependent Problems
- 4.1. Analytical Behavior of Solutions
- 4.2. Finite Difference Methods
- 4.3. Finite Element Methods
- Part IV. The Incompressible Navier-Stokes Equations
- 1. Existence and Uniqueness Results
- 2. Upwind Finite Element Method
- 3. Higher-Order Methods of Streamline Diffusion Type
- 3.1. The Oseen Problem
- 3.2. The Navier-Stokes Problem
- 4. Local Projection Stabilization for Equal-Order Interpolation
- 4.1. Local Projection Stabilization in an Abstract Setting
- 4.2. Convergence Analysis
- 4.2.1. The Special Interpolant
- 4.2.2. Stability
- 4.2.3. Consistency Error
- 4.2.4. A priori Error Estimate
- 4.3. Local Projection onto Coarse-Mesh Spaces
- 4.3.1. Simplices
- 4.3.2. Quadrilaterals and Hexahedra
- 4.4. Schemes Based on Enrichment of Approximation Spaces
- 4.4.1. Simplices
- 4.4.2. Quadrilaterals and Hexahedra
- 4.5. Relationship to Subgrid Modelling
- 4.5.1. Two-Level Approach with Piecewise Linear Elements
- 4.5.2. Enriched Piecewise Linear Elements
- 4.5.3. Spectral Equivalence of the Stabilizing Terms on Simplices
- 5. Local Projection Method for Inf-Sup Stable Elements
- 5.1. Discretization by Inf-Sup Stable Elements
- 5.2. Stability and Consistency
- 5.3. Convergence
- 5.3.1. Methods of Order r in the Case [sigma] > 0
- 5.3.2. Methods of Order r in the Case [sigma greater than or equal] 0
- 5.3.3. Methods of Order r + 1/2
- 6. Mass Conservation for Coupled Flow-Transport Problems
- 6.1. A Model Problem
- 6.2. Continuous and Discrete Mass Conservation
- 6.3. Approximated Incompressible Flows
- 6.4. Mass-Conservative Methods
- 6.4.1. Higher-Order Flow Approximation
- 6.4.2. Post-Processing of the Discrete Velocity
- 6.4.3. Scott-Vogelius Elements
- 7. Adaptive Error Control
- References
- Index