Linear systems control : deterministic and stochastic methods /
Saved in:
Author / Creator: | Hendricks, Elbert. |
---|---|
Imprint: | Berlin : Springer, c2008. |
Description: | 1 online resource (xx, 555 p.) : ill. |
Language: | English |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/8887414 |
Table of Contents:
- 1. Introduction
- 1.1. The Invisible Thread
- 1.2. Classical Control Systems and their Background
- 1.2.1. Primitive Period Developments
- 1.2.2. Pre-Classical Period Developments
- 1.2.3. Classical Control Period
- 1.2.4. Modern Control Theory
- 2. State Space Modelling of Physical Systems
- 2.1. Modelling of Physical Systems
- 2.2. Linear System Models
- 2.3. State Space Models from Transfer Functions
- 2.3.1. Companion Form 1
- 2.3.2. Companion Form 2
- 2.4. Linearization
- 2.5. Discrete Time Models
- 2.6. Summary
- 2.7. Problems
- 3. Analysis of State Space Models
- 3.1. Solution of the Linear State Equation
- 3.1.1. The Time Varying System
- 3.1.2. The Time Invariant System
- 3.2. Transfer Functions from State Space Models
- 3.2.1. Natural Modes
- 3.3. Discrete Time Models of Continuous Systems
- 3.4. Solution of the Discrete Time State Equation
- 3.4.1. The Time Invariant Discrete Time System
- 3.5. Discrete Time Transfer Functions
- 3.6. Similarity Transformations
- 3.7. Stability
- 3.7.1. Stability Criteria for Linear Systems
- 3.7.2. Time Invariant Systems
- 3.7.3. BIBO Stability
- 3.7.4. Internal and External Stability
- 3.7.5. Lyapunov's Method
- 3.8. Controllability and Observability
- 3.8.1. Controllability (Continuous Time Systems)
- 3.8.2. Controllability and Similarity Transformations
- 3.8.3. Reachability (Continuous Time Systems)
- 3.8.4. Controllability (Discrete Time Systems)
- 3.8.5. Reachability (Discrete Time Systems)
- 3.8.6. Observability (Continuous Time Systems)
- 3.8.7. Observability and Similarity Transformations
- 3.8.8. Observability (Discrete Time Systems)
- 3.8.9. Duality
- 3.8.10. Modal Decomposition
- 3.8.11. Controllable/Reachable Subspace Decomposition
- 3.8.12. Observable Subspace Decomposition
- 3.9. Canonical Forms
- 3.9.1. Controller Canonical Form
- 3.9.2. Observer Canonical Form
- 3.9.3. Duality for Canonical Forms
- 3.9.4. Pole-zero Cancellation in SISO Systems
- 3.10. Realizability
- 3.10.1. Minimality
- 3.11. Summary
- 3.12. Notes
- 3.12.1. Linear Systems Theory
- 3.13. Problems
- 4. Linear Control System Design
- 4.1. Control System Design
- 4.1.1. Controller Operating Modes
- 4.2. Full State Feedback for Linear Systems
- 4.3. State Feedback for SISO Systems
- 4.3.1. Controller Design Based on the Controller Canonical Form
- 4.3.2. Ackermann's Formula
- 4.3.3. Conditions for Eigenvalue Assignment
- 4.4. State Feedback for MIMO Systems
- 4.4.1. Eigenstructure Assignment for MIMO Systems
- 4.4.2. Dead Beat Regulators
- 4.5. Integral Controllers
- 4.6. Deterministic Observers and State Estimation
- 4.6.1. Continuous Time Full Order Observers
- 4.6.2. Discrete Time Full Order Observers
- 4.7. Observer Design for SISO Systems
- 4.7.1. Observer Design Based on the Observer Canonical Form
- 4.7.2. Ackermann's Formula for the Observer
- 4.7.3. Conditions for Eigenvalue Assignment
- 4.8. Observer Design for MIMO Systems
- 4.8.1. Eigenstructure Assignment for MIMO Observers
- 4.8.2. Dead Beat Observers
- 4.9. Reduced Order Observers
- 4.10. State Feedback with Observers
- 4.10.1. Combining Observers and State Feedback
- 4.10.2. State Feedback with Integral Controller and Observer
- 4.10.3. State Feedback with Reduced Order Observer
- 4.11. Summary
- 4.12. Notes
- 4.12.1. Background for Observers
- 4.13. Problems
- 5. Optimal Control
- 5.1. Introduction to Optimal Control
- 5.2. The General Optimal Control Problem
- 5.3. The Basis of Optimal Control - Calculus of Variations
- 5.4. The Linear Quadratic Regulator
- 5.4.1. The Quadratic Cost Function
- 5.4.2. Linear Quadratic Control
- 5.5. Steady State Linear Quadratic Regulator
- 5.5.1. Robustness of LQR Control
- 5.5.2. LQR Design: Eigenstructure Assignment Approach
- 5.6. Discrete Time Optimal Control
- 5.6.1. Discretization of the Performance Index
- 5.6.2. Discrete Time State Feedback
- 5.6.3. Steady State Discrete Optimal Control
- 5.7. Summary
- 5.8. Notes
- 5.8.1. The Calculus of Variations
- 5.9. Problems
- 6. Noise in Dynamic Systems
- 6.1. Introduction
- 6.1.1. Random Variables
- 6.2. Expectation (Average) Values of a Random Variable
- 6.2.1. Average Value of Discrete Random Variables
- 6.2.2. Characteristic Functions
- 6.2.3. Joint Probability Distribution and Density Functions
- 6.3. Random Processes
- 6.3.1. Random Processes
- 6.3.2. Moments of a Stochastic Process
- 6.3.3. Stationary Processes
- 6.3.4. Ergodic Processes
- 6.3.5. Independent Increment Stochastic Processes
- 6.4. Noise Propagation: Frequency and Time Domains
- 6.4.1. Continuous Random Processes: Time Domain
- 6.4.2. Continuous Random Processes: Frequency Domain
- 6.4.3. Continuous Random Processes: Time Domain
- 6.4.4. Inserting Noise into Simulation Systems
- 6.4.5. Discrete Time Stochastic Processes
- 6.4.6. Translating Continuous Noise into Discrete Time Systems
- 6.4.7. Discrete Random Processes: Frequency Domain
- 6.4.8. Discrete Random Processes: Running in Time
- 6.5. Summary
- 6.6. Notes
- 6.6.1. The Normal Distribution
- 6.6.2. The Wiener Process
- 6.6.3. Stochastic Differential Equations
- 6.7. Problems
- 7. Optimal Observers: Kalman Filters
- 7.1. Introduction
- 7.2. Continuous Kalman Filter
- 7.2.1. Block Diagram of a CKF
- 7.3. Innovation Process
- 7.4. Discrete Kalman Filter
- 7.4.1. A Real Time Discrete Kalman Filter (Open Form)
- 7.4.2. Block Diagram of an Open Form DKF
- 7.4.3. Closed Form of a DKF
- 7.4.4. Discrete and Continuous Kalman Filter Equivalence
- 7.5. Stochastic Integral Quadratic Forms
- 7.6. Separation Theorem
- 7.6.1. Evaluation of the Continuous LQG Index
- 7.6.2. Evaluation of the Discrete LQG Index
- 7.7. Summary
- 7.8. Notes
- 7.8.1. Background for Kalman Filtering
- 7.9. Problems
- Appendix A. Static Optimization
- A.1. Optimization Basics
- A.1.1. Constrained Static Optimization
- A.2. Problems
- Appendix B. Linear Algebra
- B.1. Matrix Basics
- B.2. Eigenvalues and Eigenvectors
- B.3. Partitioned Matrices
- B.4. Quadratic Forms
- B.5. Matrix Calculus
- Appendix C. Continuous Riccati Equation
- C.1. Estimator Riccati Equation
- C.1.1. Time Axis Reversal
- C.1.2. Using the LQR Solution
- Appendix D. Discrete Time SISO Systems
- D.1. Introduction
- D.2. The Sampling Process
- D.3. The Z-Transform
- D.4. Inverse Z-Transform
- D.5. Discrete Transfer Functions
- D.6. Discrete Systems and Difference Equations
- D.7. Discrete Time Systems with Zero-Order-Hold
- D.8. Transient Response, Poles and Stability
- D.9. Frequency Response
- D.10. Discrete Approximations to Continuous Transfer Functions
- D.10.1. Tustin Approximation
- D.10.2. Matched-Pole-Zero Approximation (MPZ)
- D.11. Discrete Equivalents to Continuous Controllers
- D.11.1. Choice of Sampling Period
- References
- Index