Markov random field modeling in image analysis /

Saved in:
Bibliographic Details
Author / Creator:Li, S. Z., 1958-
Edition:3rd ed.
Imprint:London : Springer, c2009.
Description:1 online resource (xxiii, 357 p.) : ill.
Language:English
Series:Advances in pattern recognition, 1617-7916
Advances in pattern recognition.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8889457
Hidden Bibliographic Details
ISBN:9781848002791
1848002793
Notes:Includes bibliographical references (p. 315-350) and index.
Description based on print version record.
Other form:Print version: Li, S.Z., 1958- Markov random field modeling in image analysis. 3rd ed. London : Springer, c2009 9781848002784 1848002785
Description
Summary:

Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.

Physical Description:1 online resource (xxiii, 357 p.) : ill.
Bibliography:Includes bibliographical references (p. 315-350) and index.
ISBN:9781848002791
1848002793
ISSN:1617-7916