Simplicial homotopy theory /

Saved in:
Bibliographic Details
Author / Creator:Goerss, Paul Gregory.
Imprint:Basel : Birkhäuser Verlag, c2009.
Description:1 online resource.
Language:English
Series:Modern Birkhäuser Classics
Modern Birkhäuser Classics.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8891295
Hidden Bibliographic Details
Other authors / contributors:Jardine, J. F., 1951-
ISBN:9783034601894
3034601891
Notes:"Reprint of the 1999 edition."
Includes bibliographical references and index.
Description based on print version record.
Summary:With the development of Quillen's concept of a closed model category and, in particular, a simplicial model category, the simplicial methods have become the primary way to describe non-abelian homological algebra and to address homotopy-theoretical issues in various fields, including algebraic K-theory. This book deals with these ideas.

MARC

LEADER 00000cam a2200000Ia 4500
001 8891295
003 ICU
005 20120828173200.0
006 m d
007 cr cn|
008 100301s2009 sz ob 001 0 eng d
020 |a 9783034601894 
020 |a 3034601891 
035 |a (OCoLC)534951159 
037 |a 978-3-0346-0188-7  |b Springer  |n http://www.springerlink.com 
040 |a GW5XE  |b eng  |c GW5XE  |d EBLCP  |d OCLCQ  |d MHW  |d OCLCQ 
049 |a CGUA 
082 0 4 |a 514/.24  |2 22 
090 |a QA612.7  |b .G647 2009 
100 1 |a Goerss, Paul Gregory.  |0 http://id.loc.gov/authorities/names/n87139685 
245 1 0 |a Simplicial homotopy theory /  |c Paul G. Goerss, John F. Jardine. 
260 |a Basel :  |b Birkhäuser Verlag,  |c c2009. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Modern Birkhäuser Classics 
500 |a "Reprint of the 1999 edition." 
504 |a Includes bibliographical references and index. 
505 0 |a Chapter I Simplicial sets; Chapter II Model Categories; Chapter III Classical results and constructions; Chapter IV Bisimplicial sets; Chapter V Simplicial groups; Chapter VI The homotopy theory of towers; Chapter VII Reedy model categories; Chapter VIII Cosimplicial spaces: applications; Chapter IX Simplicial functors and homotopy coherence; Chapter X Localization; References; Index. 
520 |a With the development of Quillen's concept of a closed model category and, in particular, a simplicial model category, the simplicial methods have become the primary way to describe non-abelian homological algebra and to address homotopy-theoretical issues in various fields, including algebraic K-theory. This book deals with these ideas. 
588 |a Description based on print version record. 
650 0 |a Homotopy theory.  |0 http://id.loc.gov/authorities/subjects/sh85061803 
650 4 |a Mathematics. 
655 4 |a Electronic books. 
650 7 |a Homotopy theory.  |2 fast  |0 http://id.worldcat.org/fast/fst00959852 
700 1 |a Jardine, J. F.,  |d 1951-  |0 http://id.loc.gov/authorities/names/n88199017 
830 0 |a Modern Birkhäuser Classics. 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0346-0189-4  |y SpringerLink 
903 |a HeVa 
035 |a (ICU)8891295 
929 |a eresource 
999 f f |i 8c640074-4d55-50e1-a57a-7261299905cb  |s 2926e10f-1473-5213-868d-eec51253dc5e 
928 |t Library of Congress classification  |a QA612.7 .G647 2009  |l Online  |c UC-FullText  |u http://dx.doi.org/10.1007/978-3-0346-0189-4  |z SpringerLink  |g ebooks  |i 11472138