Complex data modeling and computationally intensive statistical methods /

Saved in:
Bibliographic Details
Imprint:Milan ; New York : Springer, c2010.
Description:1 online resource (x, 164 p.) : ill.
Language:English
Series:Contributions to statistics, 1431-1968
Contributions to statistics.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8895825
Hidden Bibliographic Details
Other authors / contributors:Mantovan, Pietro.
Secchi, Piercesare.
ISBN:9788847013865 (electronic bk.)
8847013860 (electronic bk.)
9788847013858
9786613076342
6613076341
Notes:Title from PDF title page.
Includes bibliographical references.
Summary:The last years have seen the advent and development of many devices able to record and store an always increasing amount of complex and high dimensional data; 3D images generated by medical scanners or satellite remote sensing, DNA microarrays, real time financial data, system control datasets. The analysis of this data poses new challenging problems and requires the development of novel statistical models and computational methods, fueling many fascinating and fast growing research areas of modern statistics. The book offers a wide variety of statistical methods and is addressed to statisticians working at the forefront of statistical analysis. --
Other form:Print version: Complex data modeling and computationally intensive statistical methods. Milan ; London : Springer, 2010 9788847013858

MARC

LEADER 00000cam a2200000Ia 4500
001 8895825
003 ICU
005 20120829142700.0
006 m d
007 cr cn|
008 110126s2010 it a ob 000 0 eng d
019 |a 701719327  |a 708565771  |a 743408096 
020 |a 9788847013865 (electronic bk.) 
020 |a 8847013860 (electronic bk.) 
020 |z 9788847013858 
020 |z 9786613076342 
020 |z 6613076341 
035 |a (OCoLC)701368921  |z (OCoLC)701719327  |z (OCoLC)708565771  |z (OCoLC)743408096 
037 |a 978-88-470-1385-8  |b Springer  |n http://www.springerlink.com 
040 |a QE2  |b eng  |c QE2  |d GW5XE  |d EBLCP  |d OCLCQ  |d MHW  |d VPI  |d IDEBK  |d E7B  |d N$T 
049 |a CGUA 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.50285  |2 22 
090 |a QA276.4  |b .C66 2010 
245 0 0 |a Complex data modeling and computationally intensive statistical methods /  |c Pietro Mantovan (editor), Piercesare Secchi (editor). 
260 |a Milan ;  |a New York :  |b Springer,  |c c2010. 
300 |a 1 online resource (x, 164 p.) :  |b ill. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Contributions to statistics,  |x 1431-1968 
500 |a Title from PDF title page. 
504 |a Includes bibliographical references. 
520 |a The last years have seen the advent and development of many devices able to record and store an always increasing amount of complex and high dimensional data; 3D images generated by medical scanners or satellite remote sensing, DNA microarrays, real time financial data, system control datasets. The analysis of this data poses new challenging problems and requires the development of novel statistical models and computational methods, fueling many fascinating and fast growing research areas of modern statistics. The book offers a wide variety of statistical methods and is addressed to statisticians working at the forefront of statistical analysis. --  |c Provided by publisher. 
505 0 |a Cover -- Preface -- Table of Contents -- List of Contributors -- Space-Time Texture Analysis in Thermal Infraredimaging for Classification of Raynauds Phenomenon -- 1 Introduction -- 2 Thedata -- 3 Processing Thermal High Resolution Infrared Images -- 3.1 Segmentation -- 3.2 Registration -- 4 Feature Extraction -- 4.1 St-Gmrfs -- 4.2 Texture Statistics Through Co-Occurrence Matrices -- 5 Classification Results -- 6 Conclusions -- References -- Mixed-Effects Modelling of Kevlar Fibre Failure Timesthrough Bayesian Non-Parametrics -- 1 Introduction -- 2 Accelerated Life Models for Kevlar Fibre Life Data -- 3 The Bayesian Semiparametric Aft Model -- 4 Data Analysis -- 5 Conclusions -- Appendix -- References -- Space Filling and Locally Optimal Designs for Gaussian Universal Kriging -- 1 Introduction -- 2 Kriging Methodology -- 3 Optimality of Space Filling Designs -- 4 Locally Optimal Designs for Universal Kriging -- 4.1 Optimal Designs for Estimation -- 4.2 Optimal Designs for Prediction -- 5 Conclusions -- References -- Exploitation, Integration and Statistical Analysis of Thepublic Health Database and Stemi Archive in Thelombardia Region -- 1 Introduction -- 2 The Momi2 Study -- 3 The Stemi Archive -- 4 The Public Health Database -- 4.1 Healthcare Databases -- 4.2 Health Information Systems in Lombardia -- 5 The Statistical Perspective -- 5.1 Frailty Models -- 5.2 Generalised Linear Mixed Models -- 5.3 Bayesian Hierarchical Models -- 6 Conclusions -- References -- Bootstrap Algorithms for Variance Estimation in PsSampling -- 1 Introduction -- 2 The Na239;ve Boostrap -- 3 Holmbergs PsBootstrap -- 4 The 0.5 Ps-Bootstrap -- 5 The X-Balanced Ps-Bootstrap -- 6 Simulation Study -- 7 Conclusions -- References -- Fast Bayesian Functional Data Analysis of Basal Body Temperature -- 1 Introduction -- 2 Methods -- 2.1 Rvm in Linear Models -- 2.2 Extension to Linear Mixed Model -- 3 Results: Application to Bbt Data -- 3.1 Subject-Specific Profiles -- 3.2 Subject-Specific and Population Average Profiles -- 3.3 Prediction -- 4 Conclusions -- References -- A Parametric Markov Chain to Model Age- and State-Dependent Wear Processes -- 1 Introduction -- 2 System Description and Preliminary Technological Considerations -- 3 Data Description and Preliminary Statistical Considerations -- 4 Model Description -- 5 Parameter Estimation -- 6 Testing Dependence on Time and/or State -- 7 Conclusions -- References -- Case Studies in Bayesian Computation Using Inla -- 1 Introduction -- 2 Latent Gaussian Models -- 3 Integrated Nested Laplace Approximation -- 4 The Inla Package for R -- 5 Case Studies -- 5.1 A Glmm With Over-Dispersion -- 5.2 Childhood Under Nutrition in Zambia: Spatial Analysis -- 5.3 A Simple Example of Survival Data Analysis -- 6 Conclusions -- References -- A Graphical Models Approach for Comparing Gene Sets -- 1 Introduction -- 2 Latent Gaussian Models -- 3 Integ. 
650 0 |a Mathematical statistics  |x Data processing.  |0 http://id.loc.gov/authorities/subjects/sh85082137 
650 7 |a MATHEMATICS / Probability & Statistics / General  |2 bisacsh 
655 4 |a Electronic books. 
650 7 |a Mathematical statistics  |x Data processing.  |2 fast  |0 http://id.worldcat.org/fast/fst01012133 
700 1 |a Mantovan, Pietro.  |0 http://id.loc.gov/authorities/names/no94037926  |1 http://viaf.org/viaf/16804335 
700 1 |a Secchi, Piercesare.  |0 http://id.loc.gov/authorities/names/no2012104477  |1 http://viaf.org/viaf/255374236 
776 0 8 |i Print version:  |t Complex data modeling and computationally intensive statistical methods.  |d Milan ; London : Springer, 2010  |z 9788847013858  |w (OCoLC)449852913 
830 0 |a Contributions to statistics.  |0 http://id.loc.gov/authorities/names/n93034792 
856 4 0 |u http://dx.doi.org/10.1007/978-88-470-1386-5  |y SpringerLink 
903 |a HeVa 
035 |a (ICU)8895825 
929 |a eresource 
999 f f |i b899f156-cd86-5a85-8113-69657621384e  |s 771dd756-6a12-5724-b43b-5f8c6e869bc7 
928 |t Library of Congress classification  |a QA276.4 .C66 2010  |l Online  |c UC-FullText  |u http://dx.doi.org/10.1007/978-88-470-1386-5  |z SpringerLink  |g ebooks  |i 11480998