Lie groups and lie algebras : a physicist's perspective /

Saved in:
Bibliographic Details
Author / Creator:Bincer, Adam M. (Adam Marian)
Edition:1st ed.
Imprint:Oxford : Oxford University Press, 2013.
Description:xiii, 201 p. : ill. ; 26 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8943156
Hidden Bibliographic Details
ISBN:9780199662920 (hbk.)
0199662924 (hbk.)
Notes:Includes bibliographical references (p. [196]-197) and index.
Table of Contents:
  • Ch. 1. Generalities
  • Ch. 2. Lie groups and lie algebras
  • Ch. 3. Rotations: SO(3) and SU(2)
  • Ch. 4. Representations of SU(2)
  • Ch. 5. The so(n) algebra and Clifford numbers
  • Ch. 6. Reality properties of spinors
  • Ch. 7. Clebsch-Gordan series for spinors
  • Ch. 8. The center and outer automorphisms of Spin(n)
  • Ch. 9. Composition algebras
  • Ch. 10. The exceptional group G₂
  • Ch. 11. Casimir operators for orthogonal groups
  • Ch. 12. Classical groups
  • Ch. 13. Unitary groups
  • Ch. 14. The symmetric group S[r subscript] and Young tableaux
  • Ch. 15. Reduction SU(n) tensors
  • Ch. 16. Cartan basis, simple roots and fundamental weights
  • Ch. 17. Cartan classification of semisimple algebras
  • Ch. 18. Dynkin diagrams
  • Ch. 19. The Lorentz group
  • Ch. 20. The Poincaré and Liouville groups
  • Ch. 21. The Coulomb problem in n space dimensions.