Latent Markov models for longitudinal data /
Saved in:
Author / Creator: | Bartolucci, Francesco, author. |
---|---|
Imprint: | Boca Raton, FL : CRC Press, [2013] ©2013 |
Description: | xix, 234 pages : illustrations ; 24 cm. |
Language: | English |
Series: | Chapman & Hall/CRC statistics in the social and behavioral sciences series Statistics in the social and behavioral sciences series. |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/8943160 |
Table of Contents:
- List of Figures
- List of Tables
- Preface
- 1. Overview on latent Markov modeling
- 1.1. Introduction
- 1.2. Literature review on latent Markov models
- 1.3. Alternative approaches
- 1.4. Example datasets
- 1.4.1. Marijuana consumption dataset
- 1.4.2. Criminal conviction history dataset
- 1.4.3. Labor market dataset
- 1.4.4. Student math achievement dataset
- 2. Background on latent variable and Markov chain models
- 2.1. Introduction
- 2.2. Latent variable models
- 2.3. Expectation-Maximization algorithm
- 2.4. Standard errors
- 2.5. Latent class model
- 2.5.1. Basic version
- 2.5.2. Advanced versions
- 2.5.3. Maximum likelihood estimation
- 2.5.4. Selection of the number of latent classes
- 2.6. Applications
- 2.6.1. Marijuana consumption dataset
- 2.6.2. Criminal conviction history dataset
- 2.7. Markov chain model for longitudinal data
- 2.7.1. Basic version
- 2.7.2. Advanced versions
- 2.7.3. Likelihood inference
- 2.7.4. Maximum likelihood estimation
- 2.7.5. Model selection
- 2.8. Applications
- 2.8.1. Marijuana consumption dataset
- 2.8.2. Criminal conviction history dataset
- 3. Basic latent Markov model
- 3.1. Introduction
- 3.2. Univariate formulation
- 3.3. Multivariate formulation
- 3.4. Model identifiability
- 3.5. Maximum likelihood estimation
- 3.5.1. Expectation-Maximization algorithm
- 3.5.1.1. Univariate formulation
- 3.5.1.2. Multivariate formulation
- 3.5.1.3. Initialization of the algorithm and model identifiability
- 3.5.2. Alternative algorithms for maximum likelihood estimation
- 3.5.3. Standard errors
- 3.6. Selection of the number of latent states
- 3.7. Applications
- 3.7.1. Marijuana consumption dataset
- 3.7.2. Criminal conviction history dataset
- Appendix 1. Efficient implementation of recursions
- 4. Constrained latent Markov models
- 4.1. Introduction
- 4.2. Constraints on the measurement model
- 4.2.1. Univariate formulation
- 4.2.1.1. Binary response variables
- 4.2.1.2. Categorical response variables
- 4.2.2. Multivariate formulation
- 4.3. Constraints on the latent model
- 4.3.1. Linear model on the transition probabilities
- 4.3.2. Generalized linear model on the transition probabilities
- 4.4. Maximum likelihood estimation
- 4.4.1. Expectation-Maximization algorithm
- 4.4.1.1. Univariate formulation
- 4.4.1.2. Multivariate formulation
- 4.4.1.3. Initialization of the algorithm and model identifiability
- 4.5. Model selection and hypothesis testing
- 4.5.1. Model selection
- 4.5.2. Hypothesis testing
- 4.6. Applications
- 4.6.1. Marijuana consumption dataset
- 4.6.2. Criminal conviction history dataset
- Appendix 1. Marginal parametrization
- Appendix 2. Implementation of the M-step
- 5. Including individual covariates and relaxing basic model assumptions
- 5.1. Introduction
- 5.2. Notation
- 5.3. Covariates in the measurement model
- 5.3.1. Univariate formulation
- 5.3.2. Multivariate formulation
- 5.4. Covariates in the latent model
- 5.5. Interpretation of the resulting models
- 5.6. Maximum likelihood estimation
- 5.6.1. Expectation-Maximization algorithm
- 5.7. Observed information matrix, identifiabhity, and standard errors
- 5.8. Relaxing local independence
- 5.8.1. Conditional serial dependence
- 5.8.2. Conditional contemporary dependence
- 5.9. Higher order extensions
- 5.10. Applications
- 5.10.1. Criminal conviction history dataset
- 5.10.2. Labor market dataset
- Appendix 1. Multivariate link function
- 6. Including random effects and extension to multilevel data
- 6.1. Introduction
- 6.2. Random-effects formulation
- 6.2.1. Model assumptions
- 6.2.1.1. Random effects in the measurement model
- 6.2.1.2. Random effects in the latent model
- 6.2.2. Manifest distribution
- 6.3. Maximum likelihood estimation
- 6.4. Multilevel formulation
- 6.4.1. Model assumptions
- 6.4.2. Manifest distribution and maximum likelihood estimation
- 6.5. Application to the student math achievement dataset
- 7. Advanced topics about latent Markov modeling
- 7.1. Introduction
- 7.2. Dealing with continuous response variables
- 7.2.1. Linear regression
- 7.2.2. Quantile regression
- 7.2.3. Estimation
- 7.3. Dealing with missing responses
- 7.4. Additional computational issues
- 7.4.1. Maximization of the likelihood through the Newton-Raphson algorithm
- 7.4.1.1. A general description of the algorithm
- 7.4.1.2. Use for latent Markov models
- 7.4.2. Parametric bootstrap
- 7.5. Decoding and forecasting
- 7.5.1. Local decoding
- 7.5.2. Global decoding
- 7.5.3. Forecasting
- 7.6. Selection of the number of latent states
- 8. Bayesian latent Markov models
- 8.1. Introduction
- 8.2. Prior distributions
- 8.2.1. Basic latent Markov model
- 8.2.2. Constrained and extended latent Markov models
- 8.3. Bayesian inference via Reversible Jump
- 8.3.1. Reversible Jump algorithm
- 8.3.2. Post-processing the Reversible Jump output
- 8.3.3. Inference based on the simulated posterior distribution
- 8.4. Alternative sampling strategy
- 8.4.1. Continuous birth and death process based on data augmentation
- 8.4.2. Parallel sampling
- 8.5. Application to the labor market dataset
- A. Software
- A.1. Introduction
- A.2. Package LMest
- List of Main Symbols
- Bibliography
- Index