An introduction to analysis of financial data with R /

Saved in:
Bibliographic Details
Author / Creator:Tsay, Ruey S., 1951-
Imprint:Hoboken, N.J. : Wiley, c2013.
Description:xiv, 390 p. : ill. ; 25 cm.
Language:English
Series:Wiley series in probability in statistics
Wiley series in probability and statistics.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8943612
Hidden Bibliographic Details
ISBN:9780470890813 (cloth)
0470890819 (cloth)
Notes:Includes bibliographical references and index.
Table of Contents:
  • Preface
  • 1. Financial Data and their Properties
  • 1.1. Asset Returns
  • 1.2. Bond Yields and Prices
  • 1.3. Implied Volatility
  • 1.4. R Packages and Demonstrations
  • 1.4.1. Installation of R Packages
  • 1.4.2. The Quantmod Package
  • 1.4.3. Some Basic R Commands
  • 1.5. Examples of Financial Data
  • 1.6. Distributional Properties of Returns
  • 1.6.1. Review of Statistical Distributions and Their Moments
  • 1.7. Visualization of Financial Data
  • 1.8. Some Statistical Distributions
  • 1.8.1. Normal Distribution
  • 1.8.2. Lognormal Distribution
  • 1.8.3. Stable Distribution
  • 1.8.4. Scale Mixture of Normal Distributions
  • 1.8.5. Multivariate Returns
  • Exercises
  • References
  • 2. Linear Models for Financial Time Series
  • 2.1. Stationarity
  • 2.2. Correlation and Autocorrelation Function
  • 2.3. White Noise and Linear Time Series
  • 2.4. Simple Autoregressive Models
  • 2.4.1. Properties of AR Models
  • 2.4.2. Identifying AR Models in Practice
  • 2.4.3. Goodness of Fit
  • 2.4.4. Forecasting
  • 2.5. Simple Moving Average Models
  • 2.5.1. Properties of MA Models
  • 2.5.2. Identifying MA Order
  • 2.5.3. Estimation
  • 2.5.4. Forecasting Using MA Models
  • 2.6. Simple ARMA Models
  • 2.6.1. Properties of ARMA (1,1) Models
  • 2.6.2. General ARMA Models
  • 2.6.3. Identifying ARMA Models
  • 2.6.4. Forecasting Using an ARMA Model
  • 2.6.5. Three Model Representations for an ARMA Model
  • 2.7. Unit-Root Nonstationarity
  • 2.7.1. Random Walk
  • 2.7.2. Random Walk with Drift
  • 2.7.3. Trend-Stationary Time Series
  • 2.7.4. General Unit-Root Nonstationary Models
  • 2.7.5. Unit-Root Test
  • 2.8. Exponential Smoothing
  • 2.9. Seasonal Models
  • 2.9.1. Seasonal Differencing
  • 2.9.2. Multiplicative Seasonal Models
  • 2.9.3. Seasonal Dummy Variable
  • 2.10. Regression Models with Time Series Errors
  • 2.11. Long-Memory Models
  • 2.12. Model Comparison and Averaging
  • 2.12.1. In-sample Comparison
  • 2.12.2. Out-of-sample Comparison
  • 2.12.3. Model Averaging
  • Exercises
  • References
  • 3. Case Studies of Linear Time Series
  • 3.1. Weekly Regular Gasoline Price
  • 3.1.1. Pure Time Series Model
  • 3.1.2. Use of Crude Oil Prices
  • 3.1.3. Use of Lagged Crude Oil Prices
  • 3.1.4. Out-of-Sample Predictions
  • 3.2. Global Temperature Anomalies
  • 3.2.1. Unit-Root Stationarity
  • 3.2.2. Trend-Nonstationarity
  • 3.2.3. Model Comparison
  • 3.2.4. Long-Term Prediction
  • 3.2.5. Discussion
  • 3.3. US Monthly Unemployment Rates
  • 3.3.1. Univariate Time Series Models
  • 3.3.2. An Alternative Model
  • 3.3.3. Model Comparison
  • 3.3.4. Use of Initial Jobless Claims
  • 3.3.5. Comparison
  • Exercises
  • References
  • 4. Asset Volatility and Volatility Models
  • 4.1. Characteristics of Volatility
  • 4.2. Structure of a Model
  • 4.3. Model Building
  • 4.4. Testing for ARCH Effect
  • 4.5. The ARCH Model
  • 4.5.1. Properties of ARCH Models
  • 4.5.2. Advantages and Weaknesses of ARCH Models
  • 4.5.3. Building an ARCH Model
  • 4.5.4. Some Examples
  • 4.6. The GARCH Model
  • 4.6.1. An Illustrative Example
  • 4.6.2. Forecasting Evaluation
  • 4.6.3. A Two-Pass Estimation Method
  • 4.7. The Integrated GARCH Model
  • 4.8. The GARCH-M Model
  • 4.9. The Exponential Garch Model
  • 4.9.1. An Illustrative Example
  • 4.9.2. An Alternative Model Form
  • 4.9.3. Second Example
  • 4.9.4. Forecasting Using an EGARCH Model
  • 4.10. The Threshold Garch Model
  • 4.11. Asymmetric Power ARCH Models
  • 4.12. Nonsymmetric GARCH Model
  • 4.13. The Stochastic Volatility Model
  • 4.14. Long-Memory Stochastic Volatility Models
  • 4.15. Alternative Approaches
  • 4.15.1. Use of High Frequency Data
  • 4.15.2. Use of Daily Open, High, Low, and Close Prices
  • Exercises
  • References
  • 5. Applications of Volatility Models
  • 5.1. Garch Volatility Term Structure
  • 5.1.1. Term Structure
  • 5.2. Option Pricing and Hedging
  • 5.3. Time-Varying Correlations and Betas
  • 5.3.1. Time-Varying Betas
  • 5.4. Minimum Variance Portfolios
  • 5.5. Prediction
  • Exercises
  • References
  • 6. High Frequency Financial Data
  • 6.1. Nonsynchronous Trading
  • 6.2. Bid-Ask Spread of Trading Prices
  • 6.3. Empirical Characteristics of Trading Data
  • 6.4. Models for Price Changes
  • 6.4.1. Ordered Probit Model
  • 6.4.2. A Decomposition Model
  • 6.5. Duration Models
  • 6.5.1. Diurnal Component
  • 6.5.2. The ACD Model
  • 6.5.3. Estimation
  • 6.6. Realized Volatility
  • 6.6.1. Handling Microstructure Noises
  • 6.6.2. Discussion
  • Appendix A. Some Probability Distributions
  • Appendix B. Hazard Function
  • Exercises
  • References
  • 7. Value at Risk
  • 7.1. Risk Measure and Coherence
  • 7.1.1. Value at Risk (VaR)
  • 7.1.2. Expected Shortfall
  • 7.2. Remarks on Calculating Risk Measures
  • 7.3. Riskmetrics
  • 7.3.1. Discussion
  • 7.3.2. Multiple Positions
  • 7.4. An Econometric Approach
  • 7.4.1. Multiple Periods
  • 7.5. Quantile Estimation
  • 7.5.1. Quantile and Order Statistics
  • 7.5.2. Quantile Regression
  • 7.6. Extreme Value Theory
  • 7.6.1. Review of Extreme Value Theory
  • 7.6.2. Empirical Estimation
  • 7.6.3. Application to Stock Returns
  • 7.7. An Extreme Value Approach to Var
  • 7.7.1. Discussion
  • 7.7.2. Multiperiod VaR
  • 7.7.3. Return Level
  • 7.8. Peaks Over Thresholds
  • 7.8.1. Statistical Theory
  • 7.8.2. Mean Excess Function
  • 7.8.3. Estimation
  • 7.8.4. An Alternative Parameterization
  • 7.9. The Stationary Loss Processes
  • Exercises
  • References
  • Index