|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
9009676 |
003 |
ICU |
005 |
20140228112500.0 |
006 |
m o d |
007 |
cr cn| |
008 |
081017s2005 gw a ob 001 0 eng d |
019 |
|
|
|a 62762502
|a 228377152
|a 320977813
|a 647590816
|a 685362506
|a 698451295
|a 756421106
|
020 |
|
|
|a 9783540277521 (electronic bk.)
|
020 |
|
|
|a 3540277528 (electronic bk.)
|
020 |
|
|
|z 3540401725
|
020 |
|
|
|z 9783540401728
|
035 |
|
|
|a (OCoLC)262681472
|z (OCoLC)62762502
|z (OCoLC)228377152
|z (OCoLC)320977813
|z (OCoLC)647590816
|z (OCoLC)685362506
|z (OCoLC)698451295
|z (OCoLC)756421106
|
037 |
|
|
|a 978-3-540-40172-8
|b Springer
|n http://www.springerlink.com
|
040 |
|
|
|a GW5XE
|b eng
|c GW5XE
|d OCLCQ
|d MHW
|d N$T
|d YDXCP
|d TUU
|d UAB
|d CNTRU
|d E7B
|d IDEBK
|d YNG
|d OCLCQ
|d GW5XE
|d A7U
|d ZMC
|
049 |
|
|
|a CGUA
|
072 |
|
7 |
|a QA
|2 lcco
|
072 |
|
7 |
|a HB
|2 lcco
|
072 |
|
7 |
|a MAT
|x 029050
|2 bisacsh
|
082 |
0 |
4 |
|a 519.5/5
|2 22
|
090 |
|
|
|a QA280
|b .L87 2005eb
|
100 |
1 |
|
|a Lütkepohl, Helmut.
|0 http://id.loc.gov/authorities/names/n86090773
|1 http://viaf.org/viaf/85276947
|
245 |
1 |
0 |
|a New introduction to multiple time series analysis /
|c Helmut Lütkepohl.
|
260 |
|
|
|a Berlin :
|b New York :
|b Springer,
|c 2005.
|
300 |
|
|
|a 1 online resource (xxi, 764 p.) :
|b ill.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|0 http://id.loc.gov/vocabulary/contentTypes/txt
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|0 http://id.loc.gov/vocabulary/mediaTypes/c
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|0 http://id.loc.gov/vocabulary/carriers/cr
|
504 |
|
|
|a Includes bibliographical references (p. 713-732) and indexes.
|
505 |
0 |
0 |
|g 1.
|t Objectives of Analyzing Multiple Time Series --
|t Some Basics --
|t Vector Autoregressive Processes --
|t Outline of the Following Chapters --
|g Part I.
|t Finite Order Vector Autoregressive Processes --
|t 2.
|t Stable Vector Autoregressive Processes --
|t Basic Assumptions and Properties of VAR Processes --
|t Stable VAR(p) Processes --
|t The Moving Average Representation of a VAR Process --
|t Stationary Processes --
|t Computation of Autocovariances and Autocorrelations of Stable VAR Processes --
|t Forecasting --
|t The Loss Function --
|t Point Forecasts --
|t Interval Forecasts and Forecast Regions --
|t Structural Analysis with VAR Models --
|t Granger-Causality, Instantaneous Causality, and Multi-Step Causality --
|t Impulse Response Analysis --
|t Forecast Error Variance Decomposition --
|t Remarks on the Interpretation of VAR Models --
|g 3.
|t Estimation of Vector Autoregressive Processes --
|t Multivariate Least Squares Estimation --
|t The Estimator --
|t Asymptotic Properties of the Least Squares Estimator --
|
505 |
8 |
0 |
|t Small Sample Properties of the LS Estimator --
|t Least Squares Estimation with Mean-Adjusted Data and Yule-Walker Estimation --
|t Estimation when the Process Mean Is Known --
|t Estimation of the Process Mean --
|t Estimation with Unknown Process Mean --
|t The Yule-Walker Estimator --
|t Maximum Likelihood Estimation --
|t The Likelihood Function --
|t The ML Estimators --
|t Properties of the ML Estimators --
|t Forecasting with Estimated Processes --
|t General Assumptions and Results --
|t The Approximate MSE Matrix --
|t A Small Sample Investigation --
|t Testing for Causality --
|t A Wald Test for Granger-Causality --
|t Testing for Instantaneous Causality --
|t Testing for Multi-Step Causality --
|t The Asymptotic Distributions of Impulse Responses and Forecast Error Variance Decompositions --
|t The Main Results --
|t Proof of Proposition 3.6 --
|t Investigating the Distributions of the Impulse Responses by Simulation Techniques --
|t Algebraic Problems --
|t Numerical Problems --
|g 4 .
|t VAR Order Selection and Checking the Model Adequacy --
|
505 |
8 |
0 |
|t A Sequence of Tests for Determining the VAR Order --
|t The Impact of the Fitted VAR Order on the Forecast MSE --
|t The Likelihood Ratio Test Statistic --
|t A Testing Scheme for VAR Order Determination --
|t Criteria for VAR Order Selection --
|t Minimizing the Forecast MSE --
|t Consistent Order Selection --
|t Comparison of Order Selection Criteria --
|t Some Small Sample Simulation Results --
|t Checking the Whiteness of the Residuals --
|t The Asymptotic Distributions of the Autocovariances and Autocorrelations of a White Noise Process --
|t The Asymptotic Distributions of the Residual Autocovariances and Autocorrelations of an Estimated VAR Process --
|t Portmanteau Tests --
|t Lagrange Multiplier Tests --
|t Testing for Nonnormality --
|t Tests for Nonnormality of a Vector White Noise Process --
|t Tests for Nonnormality of a VAR Process --
|t Tests for Structural Change --
|t Chow Tests --
|t Forecast Tests for Structural Change --
|t Algebraic Problems --
|t Numerical Problems --
|g 5.
|t VAR Processes with Parameter Constraints --
|
505 |
8 |
0 |
|t Linear Constraints --
|t The Model and the Constraints --
|t LS, GLS, and EGLS Estimation --
|t Maximum Likelihood Estimation --
|t Constraints for Individual Equations --
|t Restrictions for the White Noise Covariance Matrix --
|t Forecasting --
|t Impulse Response Analysis and Forecast Error Variance Decomposition --
|t Specification of Subset VAR Models --
|t Model Checking --
|t VAR Processes with Nonlinear Parameter Restrictions --
|t Bayesian Estimation --
|t Basic Terms and Notation --
|t Normal Priors for the Parameters of a Gaussian VAR Process --
|t The Minnesota or Litterman Prior --
|t Practical Considerations --
|t Classical versus Bayesian Interpretation of [̄alpha] in Forecasting and Structural Analysis --
|t Algebraic Exercises --
|t Numerical Problems --
|g Part II.
|t Cointegrated Processes --
|g 6.
|t Vector Error Correction Models --
|t Integrated Processes --
|t VAR Processes with Integrated Variables --
|t Cointegrated Processes, Common Stochastic Trends, and Vector Error Correction Models --
|t Deterministic Terms in Cointegrated Processes --
|
505 |
8 |
0 |
|t Forecasting Integrated and Cointegrated Variables --
|t Causality Analysis --
|t Impulse Response Analysis --
|g 7 .
|t Estimation of Vector Error Correction Models --
|t Estimation of a Simple Special Case VECM --
|t Estimation of General VECMs --
|t LS Estimation --
|t EGLS Estimation of the Cointegration Parameters --
|t ML Estimation --
|t Including Deterministic Terms --
|t Other Estimation Methods for Cointegrated Systems --
|t Estimating VECMs with Parameter Restrictions --
|t Linear Restrictions for the Cointegration Matrix --
|t Linear Restrictions for the Short-Run and Loading Parameters --
|t Bayesian Estimation of Integrated Systems --
|t The Model Setup --
|t The Minnesota or Litterman Prior --
|t Forecasting Estimated Integrated and Cointegrated Systems --
|t Testing for Granger-Causality --
|t The Noncausality Restrictions --
|t Problems Related to Standard Wald Tests --
|t A Wald Test Based on a Lag Augmented VAR --
|t Impulse Response Analysis --
|t Algebraic Exercises --
|t Numerical Exercises --
|g 8.
|t Specification of VECMs --
|t Lag Order Selection --
|
505 |
8 |
0 |
|t Testing for the Rank of Cointegration --
|t A VECM without Deterministic Terms --
|t A Nonzero Mean Term --
|t A Linear Trend --
|t A Linear Trend in the Variables and Not in the Cointegration Relations --
|t Summary of Results and Other Deterministic Terms --
|t Prior Adjustment for Deterministic Terms --
|t Choice of Deterministic Terms --
|t Other Approaches to Testing for the Cointegrating Rank342 --
|t Subset VECMs --
|t Model Diagnostics --
|t Checking for Residual Autocorrelation --
|t Testing for Nonnormality --
|t Tests for Structural Change --
|t Algebraic Exercises --
|t Numerical Exercises --
|g Part III.
|t Structural and Conditional Models --
|g 9.
|t Structural VARs and VECMs --
|t Structural Vector Autoregressions --
|t The A-Model --
|t The B-Model --
|t The AB-Model --
|t Long-Run Restrictions `a la Blanchard-Quah --
|t Structural Vector Error Correction Models --
|t Estimation of Structural Parameters --
|t Estimating SVAR Models --
|t Estimating Structural VECMs --
|t Impulse Response Analysis and Forecast Error Variance Decomposition --
|t Further Issues --
|
505 |
8 |
0 |
|t Algebraic Problems --
|t Numerical Problems --
|g 10.
|t Systems of Dynamic Simultaneous Equations --
|t Background --
|t Systems with Unmodelled Variables --
|t Types of Variables --
|t Structural Form, Reduced Form, Final Form --
|t Models with Rational Expectations --
|t Cointegrated Variables --
|t Estimation --
|t Stationary Variables --
|t Estimation of Models with I(1) Variables --
|t Remarks on Model Specification and Model Checking --
|t Forecasting --
|t Unconditional and Conditional Forecasts --
|t Forecasting Estimated Dynamic SEMs --
|t Multiplier Analysis --
|t Optimal Control --
|t Concluding Remarks on Dynamic SEMs --
|g Part IV.
|t Infinite Order Vector Autoregressive Processes --
|g 11.
|t Vector Autoregressive Moving Average Processes --
|t Finite Order Moving Average Processes --
|t VARMA Processes --
|t The Pure MA and Pure VAR Representations of a VARMA Process --
|t A VAR(1) Representation of a VARMA Process --
|t The Autocovariances and Autocorrelations of a VARMA(p, q) Process --
|t Forecasting VARMA Processes --
|
505 |
8 |
0 |
|t Transforming and Aggregating VARMA Processes --
|t Linear Transformations of VARMA Processes --
|t Aggregation of VARMA Processes --
|t Interpretation of VARMA Models --
|t Granger-Causality --
|t Impulse Response Analysis --
|g 12.
|t Estimation of VARMA Models --
|t The Identification Problem --
|t Nonuniqueness of VARMA Representations --
|t Final Equations Form and Echelon Form --
|t Illustrations --
|t The Gaussian Likelihood Function --
|t The Likelihood Function of an MA(1) Process --
|t The MA(q) Case --
|t The VARMA(1, 1) Case --
|t The General VARMA(p, q) Case --
|t Computation of the ML Estimates --
|t The Normal Equations --
|t Optimization Algorithms --
|t The Information Matrix --
|t Preliminary Estimation --
|t An Illustration --
|t Asymptotic Properties of the ML Estimators --
|t Theoretical Results --
|t A Real Data Example --
|t Forecasting Estimated VARMA Processes --
|t Estimated Impulse Responses --
|g 13.
|t Specification and Checking the Adequacy of VARMA Models --
|t Specification of the Final Equations Form --
|t A Specification Procedure --
|
505 |
8 |
0 |
|t Specification of Echelon Forms --
|t A Procedure for Small Systems --
|t A Full Search Procedure Based on Linear Least Squares Computations --
|t Hannan-Kavalieris Procedure --
|t Poskitt's Procedure --
|t Remarks on Other Specification Strategies for VARMA Models --
|t Model Checking --
|t LM Tests --
|t Residual Autocorrelations and Portmanteau Tests --
|t Prediction Tests for Structural Change --
|t Critique of VARMA Model Fitting --
|g 14.
|t Cointegrated VARMA Processes --
|t The VARMA Framework for I(1) Variables --
|t Levels VARMA Models --
|t The Reverse Echelon Form --
|t The Error Correction Echelon Form --
|t Estimation --
|t Estimation of ARMARE Models --
|t Estimation of EC-ARMARE Models --
|t Specification of EC-ARMARE Models --
|t Specification of Kronecker Indices --
|t Specification of the Cointegrating Rank --
|t Forecasting Cointegrated VARMA Processes --
|t Algebraic Exercises --
|t Numerical Exercises --
|g 15.
|t Fitting Finite Order VAR Models to Infinite Order Processes --
|t Background --
|
505 |
8 |
0 |
|t Multivariate Least Squares Estimation --
|t Forecasting --
|t Theoretical Results --
|t Impulse Response Analysis and Forecast Error Variance Decompositions --
|t Asymptotic Theory --
|t Cointegrated Infinite Order VARs --
|t The Model Setup --
|t Estimation --
|t Testing for the Cointegrating Rank --
|g Part V.
|t Time Series Topics --
|g 16.
|t Multivariate ARCH and GARCH Models --
|t Background --
|t Univariate GARCH Models --
|t Definitions --
|t Forecasting --
|t Multivariate GARCH Models --
|t Multivariate ARCH --
|t MGARCH --
|t Other Multivariate ARCH and GARCH Models --
|t Estimation --
|t Theory --
|t Checking MGARCH Models --
|t ARCH-LM and ARCH-Portmanteau Tests --
|t LM and Portmanteau Tests for Remaining ARCH --
|t Other Diagnostic Tests --
|t Interpreting GARCH Models --
|t Causality in Variance --
|t Conditional Moment Profiles and Generalized Impulse Responses --
|t Problems and Extensions --
|
505 |
8 |
0 |
|g 17.
|t Periodic VAR Processes and Intervention Models --
|t The VAR(p) Model with Time Varying Coefficients --
|t General Properties --
|t ML Estimation --
|t Periodic Processes --
|t A VAR Representation with Time Invariant Coefficients --
|t ML Estimation and Testing for Time Varying Coefficients --
|t Bibliographical Notes and Extensions --
|t Intervention Models --
|t Interventions in the Intercept Model --
|t A Discrete Change in the Mean --
|t An Illustrative Example --
|t Extensions and References --
|g 18.
|t State Space Models --
|t Background --
|t State Space Models --
|t The Model Setup --
|t More General State Space Models --
|t The Kalman Filter --
|t The Kalman Filter Recursions --
|t Proof of the Kalman Filter Recursions --
|t Maximum Likelihood Estimation of State Space Models --
|t The Log-Likelihood Function --
|t The Identification Problem --
|t Maximization of the Log-Likelihood Function --
|t Asymptotic Properties of the ML Estimator --
|
505 |
8 |
0 |
|t A Real Data Example --
|g Appendices
|g A.
|t Vectors and Matrices --
|t Basic Definitions --
|t Basic Matrix Operations --
|t The Determinant --
|t The Inverse, the Adjoint, and Generalized Inverses --
|t Inverse and Adjoint of a Square Matrix --
|t Generalized Inverses --
|t The Rank --
|t Eigenvalues and -vectors - Characteristic Values and Vectors --
|t The Trace --
|t Some Special Matrices and Vectors --
|t Idempotent and Nilpotent Matrices --
|t Orthogonal Matrices and Vectors and Orthogonal Complements --
|t Definite Matrices and Quadratic Forms --
|t Decomposition and Diagonalization of Matrices --
|t The Jordan Canonical Form --
|t Decomposition of Symmetric Matrices --
|t The Choleski Decomposition of a Positive Definite Matrix --
|t Partitioned Matrices --
|t The Kronecker Product --
|t The vec and vech Operators and Related Matrices --
|t The Operators --
|t Elimination, Duplication, and Commutation Matrices --
|t Vector and Matrix Differentiation --
|
505 |
8 |
0 |
|t Optimization of Vector Functions --
|t Problems --
|g B.
|t Multivariate Normal and Related Distributions --
|t Multivariate Normal Distributions --
|t Related Distributions --
|g C.
|t Stochastic Convergence and Asymptotic Distributions --
|t Concepts of Stochastic Convergence --
|t Order in Probability --
|t Infinite Sums of Random Variables --
|t Laws of Large Numbers and Central Limit Theorems --
|t Standard Asymptotic Properties of Estimators and Test Statistics --
|t Maximum Likelihood Estimation --
|t Likelihood Ratio, Lagrange Multiplier, and Wald Tests --
|t Unit Root Asymptotics --
|t Univariate Processes --
|t Multivariate Processes --
|g D.
|t Evaluating Properties of Estimators and Test Statistics by Simulation and Resampling Techniques --
|t Simulating a Multiple Time Series with VAR Generation Process --
|t Evaluating Distributions of Functions of Multiple Time Series by Simulation --
|t Resampling Methods.
|
520 |
|
|
|a Deals with analyzing and forecasting multiple time series, considering a range of models and methods. This reference work and graduate-level textbook enables readers to perform their analyses in a competent manner.
|
588 |
|
|
|a Description based on print version record.
|
650 |
|
0 |
|a Time-series analysis.
|0 http://id.loc.gov/authorities/subjects/sh85135430
|
650 |
|
7 |
|a MATHEMATICS
|x Probability & Statistics
|x Time Series.
|2 bisacsh
|
650 |
1 |
7 |
|a Tijdreeksen.
|2 gtt
|
650 |
|
7 |
|a Analise De Series Temporais.
|2 larpcal
|
655 |
|
4 |
|a Electronic books.
|
650 |
|
7 |
|a Time-series analysis.
|2 fast
|0 http://id.worldcat.org/fast/fst01151190
|
776 |
0 |
8 |
|i Print version:
|a Lütkepohl, Helmut.
|t New introduction to multiple time series analysis.
|d Berlin : New York : Springer, 2005
|z 3540401725
|z 9783540401728
|w (DLC) 2005927322
|w (OCoLC)61028971
|
856 |
4 |
0 |
|z SpringerLink
|u http://dx.doi.org/10.1007/3-540-27752-8
|
903 |
|
|
|a HeVa
|
929 |
|
|
|a eresource
|
999 |
f |
f |
|i 0c7b152f-5940-5ee9-a6ee-f049dd89231f
|s bd609877-ec61-5512-8085-f935e01caaa4
|
928 |
|
|
|t Library of Congress classification
|a QA280 .L87 2005eb
|l Online
|c UC-FullText
|n SpringerLink
|u http://dx.doi.org/10.1007/3-540-27752-8
|g ebooks
|i 7161828
|