Stability to the incompressible Navier-Stokes equations /

Saved in:
Bibliographic Details
Author / Creator:Gui, Guilong.
Imprint:Berlin ; New York : Springer, c2013.
Description:1 online resource.
Language:English
Series:Springer theses, 2190-5053
Springer theses.
Subject:
Format: E-Resource Dissertations Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/9850665
Hidden Bibliographic Details
ISBN:9783642360282 (electronic bk.)
3642360289 (electronic bk.)
9783642360275
Notes:Thesis (PhD.)-- Graduate University of Chinese Academy of Sciences.
Includes bibliographical references and index.
Summary:This thesis contains results of Dr. Guilong Gui during his PhD period with the aim to understand incompressible Navier-Stokes equations. It is devoted to the study of the stability to the incompressible Navier-Stokes equations. There is great potential for further theoretical and numerical research in this field. The techniques developed in carrying out this work are expected to be useful for other physical model equations. It is also hopeful that the thesis could serve as a valuable reference on current developments in research topics related to the incompressible Navier-Stokes equations. It

MARC

LEADER 00000cam a2200000Ka 4500
001 9850665
003 ICU
005 20140128113200.0
006 m o d
007 cr cnu---unuuu
008 130424s2013 gw omb 001 0 eng d
020 |a 9783642360282 (electronic bk.) 
020 |a 3642360289 (electronic bk.) 
020 |z 9783642360275 
035 |a (OCoLC)840600120 
040 |a GW5XE  |c GW5XE  |d ZMC  |d YDXCP  |d COO  |d N$T  |d E7B  |d IDEBK  |d CDX  |d MHW 
049 |a CGUA 
072 7 |a MAT  |x 041000  |2 bisacsh 
082 0 4 |a 518/.64  |2 23 
090 |a QA374  |b .G85 2013 
100 1 |a Gui, Guilong.  |0 http://id.loc.gov/authorities/names/n2016038878  |1 http://viaf.org/viaf/306299015 
245 1 0 |a Stability to the incompressible Navier-Stokes equations /  |c Guilong Gui. 
260 |a Berlin ;  |a New York :  |b Springer,  |c c2013. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Springer theses,  |x 2190-5053 
505 0 0 |t Introduction --  |t Stability to the Global Large Solutions of the Navier-Stokes Equations --  |t Global Smooth Solutions to the 2-D Inhomogeneous Navier-Stokes Equations with Variable Viscosity --  |t On the Decay and Stability to Global Solutions of the 3-D Inhomogeneous Navier-Stokes Equations. 
502 |a Thesis (PhD.)-- Graduate University of Chinese Academy of Sciences. 
504 |a Includes bibliographical references and index. 
520 |a This thesis contains results of Dr. Guilong Gui during his PhD period with the aim to understand incompressible Navier-Stokes equations. It is devoted to the study of the stability to the incompressible Navier-Stokes equations. There is great potential for further theoretical and numerical research in this field. The techniques developed in carrying out this work are expected to be useful for other physical model equations. It is also hopeful that the thesis could serve as a valuable reference on current developments in research topics related to the incompressible Navier-Stokes equations. It 
650 0 |a Navier-Stokes equations.  |0 http://id.loc.gov/authorities/subjects/sh85090420 
653 4 |a Mathematics. 
653 4 |a Differential equations, partial. 
653 4 |a Partial Differential Equations. 
655 4 |a Electronic books. 
650 7 |a Navier-Stokes equations.  |2 fast  |0 http://id.worldcat.org/fast/fst01035071 
830 0 |a Springer theses.  |0 http://id.loc.gov/authorities/names/no2010186160 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-36028-2  |y SpringerLink 
903 |a HeVa 
035 |a (ICU)9850665 
929 |a eresource 
999 f f |i fc159aa0-eaef-5e24-883f-042239cd3ca4  |s c9ed69ac-aef8-50b4-ab42-e9eb55e351ea 
928 |t Library of Congress classification  |a QA374 .G85 2013  |l Online  |c UC-FullText  |u http://dx.doi.org/10.1007/978-3-642-36028-2  |z SpringerLink  |g ebooks  |i 11492204